--- title: "BioMoR Benchmarking Tutorial" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{BioMoR Benchmarking Tutorial} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} library(BioMoR) set.seed(123) ``` This vignette provides a short, fast example of benchmarking models with **BioMoR**. ```{r} # Prepare dataset data(iris) iris$Label <- ifelse(iris$Species == "setosa", "Active", "Inactive") # Cross-validation control ctrl <- get_cv_control(cv = 3) # Train a Random Forest model fit <- train_rf(iris, outcome_col = "Label", ctrl = ctrl) # Compute simple benchmark metrics metrics <- biomor_benchmark(fit, iris, outcome_col = "Label") metrics ``` For more elaborate visualizations (ROC, PR curves, calibration plots), users can combine the model predictions with packages such as **yardstick** and **ggplot2**.