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The intuition for the algorithm is that an observation should be clustered with other observations
mainly based on their observed values (hence the weights on imputed values), while the resulting
clusters provide donors for the missing value imputation, so that subsequently all variables can be
used for clustering. It is usually recommended to standardize the data, if not measured on the same
scale, prior to clustering so that each column has a mean of zero and a standard deviation of one.
If all variables were measured on the same scale it is still important that they are centered before
ClustImpute is applied with weights, i.e., with nend> 1, otherwise the weighting procedure will
introduce a bias. On a high-level the algorithm follows these steps:

1. Random imputation: replace all NAs by random imputation, i.e., for each variable with miss-
ings, draw from the marginal distribution of this variable excluding the missings. This does
not take into account any correlations with other variables.

2. Weights < 1 are multiplied with imputed values to adjust their scale. The weights are calculated
by a (linear) weight function that starts near zero and converges to 1 at nend.

3. Regular k-means clustering with the Euclidean norm is performed with a number of csteps steps
starting with a random initialization.

4. The imputed values from step 2 are replaced by new draws conditionally on the cluster assign-
ment from step 3.

5. Steps 2 to 4 are repeated nriter times in total. Any subsequent k-means clustering in step 3
uses the previous cluster centroids for initialization. Typically nriter is larger than nend.

6. After the last draw of missing values a final k-means clustering is performed.

A very good overview on missing data imputation can be found in [2], for example. For k-means
clustering we refer to the chapter on unsupervised learning in [1].

In the following we describe the clustering procedure formally and in more detail. We begin by
describing classical k-means clustering and then highlight the difference of this implementation.
First we describe the computation of the (hidden) k-th cluster centroid from all observations
x assigned to cluster k. Let’s assume there are N observations x in a p-dimensional space of
real numbers and K clusters. Then each partition is characterized by a function s : {1, . . . , N} 7→
{1, . . . , K} that maps each observation to exactly one cluster. The computation of the k-th cluster
centroid in the l-th iteration can be written as

(1) cl
k = 1

N l−1
k

∑

{i:sl−1(i)=k}
xi

where N l−1
k is the number of observations in cluster k, i.e., N l−1

k = |{i : sl−1(i) = k}|, and sl−1 is
the partition function from the previous iteration. The initialization s0 is typically random. The
following step is to determine the closest centroid for each observation, i.e., to update the partition
function:

(2) sl(i) = arg min
k

∥∥xi − cl
k

∥∥2

Here ‖·‖ denotes the Euclidean norm. In our setting X = (xij) has missing values. Therefore we
are estimating

(3) X̃ij
l = 1{xij 6=NA}xij + 1{xij=NA}U
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where the weight function is given by w(l) = min
(

l
nend

, 1
)

, and U l
ij is uniformly distributed on all

non-missing values of the same column j that lie in the same cluster sl−1(i), or all other variables
if this set is empty. Mathematically, U l

ij is uniformly distributed on

(4) Sl
ij =

{
{xrj 6= NA : sl−1(r) = sl−1(i)}, if non-empty

{xrj 6= NA}, otherwise.

Thus the calculation of the new centroids is not only conditional on s but also on the realization
of the random variable U l = (U l

ij):

(5) c̃k
l = 1

N l−1
k

∑

{i:sl−1(i)=k}
x̃i

l,

where Uij is simply set to zero if xij is not missing. In early iterations, the weight function w(l) is
near zero, thus, for each component j, this is basically the mean over-all non missing values xij .
Since the denominator Nk does not change with the share of missing values, there is some linear
regularization towards zero, the mean due to standardization, proportional to the share of missing
values. Finally, the update of the partition function,

(6) sl(i) = arg min
k

(∥∥x̃i
l − c̃k

l
∥∥2)

triggers, by definition, an update of Sij , U and X̃.

References

[1] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

[2] S. Van Buuren. Flexible imputation of missing data. Chapman and Hall/CRC, 2018.


