--- title: "Intention-To-Treat Analysis" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Intention-To-Treat Analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` Here, we'll go over some examples of using ITT. First we need to load the library before getting in to some sample use cases. ```{r setup, eval=FALSE} library(SEQTaRget) ``` ## ITT With 5 bootstrap samples ```{r eval=FALSE} options <- SEQopts(# tells SEQuential to create kaplan meier curves km.curves = TRUE, # tells SEQuential to bootstrap bootstrap = TRUE, # tells SEQuential to run bootstraps 5 times bootstrap.nboot = 5) # use example data data <- SEQdata model <- SEQuential(data, id.col = "ID", time.col = "time", eligible.col = "eligible", treatment.col = "tx_init", outcome.col = "outcome", time_varying.cols = c("N", "L", "P"), fixed.cols = "sex", method = "ITT", options = options) km_curve(model, plot.type = "risk") # retrieve risk plot survival_data <- km_data(model) # retrieve survival and risk data ``` ## ITT with 5 bootstrap samples and losses-to-followup ```{r eval=FALSE} options <- SEQopts(km.curves = TRUE, bootstrap = TRUE, bootstrap.nboot = 5, # tells SEQuential to expect LTFU as the censoring column cense = "LTFU", # tells SEQuential to treat this column as the # censoring eligibility column cense.eligible = "eligible_cense") # use example data for LTFU data <- SEQdata.LTFU model <- SEQuential(data, id.col = "ID", time.col = "time", eligible.col = "eligible", treatment.col = "tx_init", outcome.col = "outcome", time_varying.cols = c("N", "L", "P"), fixed.cols = "sex", method = "ITT", options = options) km_curve(model, plot.type = "risk") survival_data <- km_data(model) ``` ## ITT with 5 bootstrap samples and competing events ```{r eval=FALSE} options <- SEQopts(km.curves = TRUE, bootstrap = TRUE, bootstrap.nboot = 5, # Using LTFU as our competing event compevent = "LTFU") data <- SEQdata.LTFU model <- SEQuential(data, id.col = "ID", time.col = "time", eligible.col = "eligible", treatment.col = "tx_init", outcome.col = "outcome", time_varying.cols = c("N", "L", "P"), fixed.cols = "sex", method = "ITT", options = options) km_curve(model, plot.type = "risk") survival_data <- km_data(model) ``` ## ITT hazard ratio with 5 bootstrap samples and competing events ```{r eval=FALSE} options <- SEQopts(# km.curves must be set to FALSE to turn on hazard # ratio creation km.curves = FALSE, # set hazard to TRUE for hazard ratio creation hazard = TRUE, bootstrap = TRUE, bootstrap.nboot = 5, compevent = "LTFU") data <- SEQdata.LTFU model <- SEQuential(data, id.col = "ID", time.col = "time", eligible.col = "eligible", treatment.col = "tx_init", outcome.col = "outcome", time_varying.cols = c("N", "L", "P"), fixed.cols = "sex", method = "ITT", options = options) # retrieve hazard ratios hazard_ratio(model) ``` ## ITT with 5 bootstrap samples and competing events in subgroups defined by sex ```{r, eval=FALSE} options <- SEQopts(km.curves = TRUE, bootstrap = TRUE, bootstrap.nboot = 5, compevent = "LTFU", # define the subgroup subgroup = "sex") data <- SEQdata.LTFU model <- SEQuential(data, id.col = "ID", time.col = "time", eligible.col = "eligible", treatment.col = "tx_init", outcome.col = "outcome", time_varying.cols = c("N", "L", "P"), fixed.cols = "sex", method = "ITT", options = options) km_curve(model, plot.type = "risk") survival_data <- km_data(model) ```