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1 Introduction

The purpose of this vignette is to demonstrate the use of some of the new commands
available as part of the apc.indiv update to the R package apc.

This code is designed to allow the user to study the effects of age, period, and cohort
on an outcome of interest. The age-period-cohort identification problem is avoided
because the code uses the reparametrization approach developed in Kuang, Nielsen and
Nielsen (2008). This approach does not attempt to separate the linear effects of age,
period, and cohort, which are unidentified due to the well-known identification problem.
Instead, the focus is on estimation of the non-linear effects. The non-linear effects that
are identified are “double-differences” in each of age, period, and cohort. These
“double-differences” are the accelerations in each of age, period, and cohort. By
cumulating these accelerations a picture of the non-linear part of the relationship
between age, period, or cohort and the outcome of interest can be constructed. Further
details of the reparametrization approach and how the double-differences and cumulated
double-differences should be interpreted are available in Nielsen (2015).

The new code allows for estimation of the reparametrized APC effects from the
following:

• Gaussian models using repeated cross-section data

• Logistic models using repeated cross-section data

• Both of the above with survey weights

• Gaussian models using panel data (with POLS, random effects, and fixed effects
options)

• All of the above with covariates included in the model

The tools build on several other packages. In particular plm (Croissant and Millo,
2008) and survey (Lumley, 2019) are used to perform the estimation for panel data and
survey data respectively, while lmtest (Zeileis and Hothorn, 2002) and car (Fox and
Weisberg, 2019) are used for testing restrictions. The aggregate-data functions from the
package apc Nielsen (2015) were cannibalised extensively to produce the apc.indiv

functions.

2 Repeated Cross Section

To illustrate the use of the code for repeated cross-section data, I use the Wage data
from the ISLR package (James et al, 2017). This data records information about 3000
male workers in the Mid-Atlantic region of the US, and was manually assembled from
the March 2011 supplement to the American Current Population Survey. I examine the
age, period, and cohort effects on the log wage of these workers (a continuous outcome),
and on the probability that they hold a job classified as “industrial” rather than
“information” (a binary outcome). There is a concave non-linear relationship between
age and the log wage, but no non-linear relationship with period or cohort. There is a
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sharp acceleration in the probability of holding an industrial job in 2008, followed by a
compensating deceleration; this may indicate temporary layoffs in response to the
financial crisis that are job class-specific. Note that this data does not contain weights
and there is no evidence that the wage information has been corrected for inflation.

Data assessment and cleaning

I begin by examining the age-period-cohort structure of the data

> library("plyr")

> library("reshape")

> library("ISLR")

> data("Wage")

> summary(Wage)

year age maritl race

Min. :2003 Min. :18.00 1. Never Married: 648 1. White:2480

1st Qu.:2004 1st Qu.:33.75 2. Married :2074 2. Black: 293

Median :2006 Median :42.00 3. Widowed : 19 3. Asian: 190

Mean :2006 Mean :42.41 4. Divorced : 204 4. Other: 37

3rd Qu.:2008 3rd Qu.:51.00 5. Separated : 55

Max. :2009 Max. :80.00

education region jobclass

1. < HS Grad :268 2. Middle Atlantic :3000 1. Industrial :1544

2. HS Grad :971 1. New England : 0 2. Information:1456

3. Some College :650 3. East North Central: 0

4. College Grad :685 4. West North Central: 0

5. Advanced Degree:426 5. South Atlantic : 0

6. East South Central: 0

(Other) : 0

health health_ins logwage wage

1. <=Good : 858 1. Yes:2083 Min. :3.000 Min. : 20.09

2. >=Very Good:2142 2. No : 917 1st Qu.:4.447 1st Qu.: 85.38

Median :4.653 Median :104.92

Mean :4.654 Mean :111.70

3rd Qu.:4.857 3rd Qu.:128.68

Max. :5.763 Max. :318.34

> AP_count <- count(Wage, c("age", "year"))

> AP_show <- cast(AP_count, age~year)

> AP_show[1:10,]

age 2003 2004 2005 2006 2007 2008 2009

1 18 1 4 NA 4 NA 1 1

2 19 6 NA 2 2 1 1 2
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3 20 4 2 NA 5 5 1 3

4 21 3 2 2 1 1 4 2

5 22 8 5 8 5 5 3 4

6 23 7 3 10 5 8 10 2

7 24 6 7 7 4 2 4 2

8 25 12 7 11 8 7 7 4

9 26 11 3 8 7 5 4 9

10 27 6 9 7 5 3 10 13

The output of the above is a long table, with a column for each of the seven periods
in the data and a row for each of the 61 ages. Each cell shows the number of
observations in the data for that age-period combination. The apc.indiv functions
require a contiguous dataset, and so it is necessary to restrict the data by age and
period so that no cells have 0 observations. In this case I will omit some of the youngest
and oldest ages, which are sparsely observed.

> Wage2 <- Wage[Wage$age >= 25 & Wage$age <= 55, ]

need to change the names

> names(Wage2)[names(Wage2) %in% c("year","age")] <- c("period","age")

tidy some variables for the analysis

> cohort <- Wage2$period - Wage2$age

> indust_job <- ifelse(Wage2$jobclass=="1. Industrial", 1, 0)

> hasdegree <- ifelse(Wage2$education

+ %in% c("4. College Grad", "5. Advanced Degree"), 1, 0)

> married <- ifelse(Wage2$maritl == "2. Married", 1, 0)

> Wage3 <- cbind(Wage2, cohort, indust_job, hasdegree, married)

In the above, I have restricted the data to those aged between 25 and 55. Note that I
have also renamed some of the variables; the apc.indiv functions require that at least
two of the variables age, period, and cohort are present in the data. I have also tidied
some of the other variables that are of interest in the analysis, creating indicators for
whether the job is industrial (as opposed to informational), whether the worker has a
college degree, and whether the worker is married.

I will be interested in how the wage of the worker and the nature of their job
(industrial or otherwise) is related to their age, cohort, and period of observation.
Before performing a formal analysis of these relationships using the apc.indiv

functions, I can use a visualisation to conduct a preliminary search for patterns in these
variables along age, period, or cohort. This is done using ggplot2 (Wickham, 2016).

> library("ggplot2")

> mean_logwage <- ddply(Wage3, .variables=c("period", "age"),

+ function(dfr, colnm){mean(dfr[, colnm])}, "logwage")

> names(mean_logwage)[3] <- "Mean_logwage"
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> plot_mean_logwage <- ggplot(mean_logwage, aes(period, age)) +

+ theme_bw() +

+ xlab('\n Period') +

+ ylab('Age\n') +

+ geom_tile(aes(fill = Mean_logwage)) +

+ scale_fill_gradientn(colours=c("red", "blue"),

+ space = 'Lab', name="Mean logwage \n") +

+ scale_x_continuous(expand=c(0,0)) +

+ scale_y_continuous(expand=c(0,0)) +

+ theme(axis.text=element_text(size=18),

+ axis.title=element_text(size=24, face="bold"),

+ legend.title=element_text(size=20, face="bold"),

+ legend.key.size = unit(1, "cm"),

+ legend.text=element_text(size=18))

> plot_mean_logwage

The output of the above code is seen in figure ??. Each block shows the mean log
wage among observations with that age-period combination in the data. The red colour
corresponds to a lower mean log wage and the blue to a higher mean log wage. The
concentration could be a combination of age and period effects: young people have lower
wages, and in later years people have higher nominal wages (the data may not be
adjusted for inflation).

We can use similar code to produce an analagous graph, showing the mean value of
the indicator indust_job in each age-period cell. That mean indicates the proportion of
people in that cell who have an industrial, rather than an information, role. This graph
is not shown here; it has a similar pattern, with a higher probability of being in an
industrial job concentrated among the young in the early 2000s.

Analysis of log wage

I now use the functions developed in apc.indiv to investigate the non-linear patterns in
age, period, and cohort that can be identified from this data. These functions have a
number of dependency packages which must be loaded if they are not already in the
environment.

> library("apc")

> library("plyr")

> library("lmtest")

> library("car")

> library("plm")

> library("survey")

The first stage of the analysis is to estimate a table which can be used to determine
how many of the elements of the age-period-cohort reparametrization are needed to
describe the variation in this data. The relevant code is below: I specify the dataset,
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dependent variable, covariates I am including (in this case, I include the indicator for
whether a person has a degree, as this is expected to influence their wage), the
appropriate model family for this data, and which type of test I want to use. Here I
chose a Wald test, compared against an F distribution; one could perform the Wald test
using a Chi-squared distribution, or use a Likelihood Ratio test which must be compared
with a Chi-squared distribution. I also choose to include a “TS” model in the table. This
Time-Saturated (TS) model is a more general model than the reparametrized
age-period-cohort model; it includes an indicator for each age-period combination
present in the data. It nests the age-period-cohort model and therefore allows us to test
whether the age-period-cohort model is sufficient to describe the variation in the data.

> logwage_tab <- apc.indiv.model.table(Wage3, dep.var="logwage",

+ covariates="hasdegree", model.family="gaussian",

+ test="Wald", dist="F", TS=TRUE)

> logwage_tab$table

Wald (F) vs TS DF ( * , 2197) p-value Wald (F) vs APC DF ( * , 2342)

TS NA NA NA NA NA

APC 1.052 145 0.323 NA NA

AP 1.031 180 0.378 0.939 35

AC 1.063 150 0.292 1.356 5

PC 1.145 174 0.101 1.605 29

Ad 1.037 185 0.355 0.980 40

Pd 1.236 209 0.016 1.646 64

Cd 1.147 179 0.096 1.547 34

A 1.137 186 0.107 1.432 41

P 1.548 210 0.000 2.645 65

C 1.369 180 0.001 2.672 35

t 1.233 214 0.015 1.609 69

tA 1.301 215 0.003 1.810 70

tP 1.539 215 0.000 2.538 70

tC 1.385 215 0.000 2.068 70

1 1.613 216 0.000 2.749 71

p-value AIC lik

TS NA 1178.744 -370.372

APC NA 1050.923 -451.461

AP 0.572 1014.561 -468.280

AC 0.238 1047.905 -454.952

PC 0.022 1040.461 -475.230

Ad 0.507 1010.992 -471.496

Pd 0.001 1029.152 -504.576

Cd 0.023 1036.545 -478.272

A 0.038 1028.702 -481.351

P 0.000 1091.992 -536.996

C 0.000 1075.497 -498.748
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t 0.001 1024.753 -507.377

tA 0.000 1038.180 -515.090

tP 0.000 1087.515 -539.757

tC 0.000 1055.784 -523.892

1 0.000 1102.235 -548.117

The output of the above code is seen in table ??. Look for the model which minimises
the AIC; this is the model where the AIC takes the value 1010.99, i.e. the Ad model. We
can also see that the p-values of the Wald tests of this model against the more general
TS and APC models are quite large, indicating support for the reduction from those
more general models. The Ad model, or age-drift model, includes double-differences in
age only; the double-differences in period and cohort are constrained to zero. Further
details of the APC sub-models are available in Nielsen (2015).

I now estimate the Ad model alone. I use a table to inspect the covariate coefficients,
but the best way to examine the estimated time effects is by a visualisation. There are
30 ages in my dataset, which means 28 double-differences in age. Rather than looking at
28 estimates for double-differences, it is easier to understand their interpretation by
plotting them.

> logwage_ad <- apc.indiv.est.model(Wage3, dep.var = "logwage",

+ covariates="hasdegree",

+ model.family="gaussian",

+ model.design="Ad")

> logwage_ad$coefficients.covariates

Estimate Std. Error t value Pr(>|t|)

[1,] 0.2853405 0.01247669 22.86988 8.126105e-105

> apc.plot.fit(logwage_ad, main.outer="")

WARNING apc.plot.fit: sdv large for plot 5 - possibly not plotted

As expected, the coefficient on having a degree is positive (0.285) and highly
significant (p-value of 8.2e−105). The visual representation of the Ad part of the model is
seen below. Subfigures (d) through (f) show the estimated linear plane, which combines
the unidentified linear effects of age, period, and cohort. This is the “drift” part of the
model. The first linear trend is plotted in the age dimension, while the second linear
trend is plotted in the cohort dimension; respectively they combine the linear effects of
age and period, and of cohort and period. The net effect of the three unidentifiable
slopes then is that there is an increase in log wage with age and an increase in log wage
with cohort, which may be used for forecasting purposes.

Subfigures (a) and (g) are of greater interest. Subfigure (a) shows the estimated
double-differences in age, of which there are 28. Subfigure (g) shows the result of
cumulating these to get a picture of the non-linear relationship between age and
log-wage. We see that this relationship is concave, which would be consistent with
acceleration in log wage up to the mid-30s and a plateauing thereafter.
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This concavity is of interest because we can use it to evaluate consistency with
theoretical models of the evolution of log wages over the life-cycle. For example, we
could imagine a theory model which predicted that log wage is not only concave over the
life cycle but is also quadratic. That the concavity is quadratic is a testable restriction
in our APC model. The advantage to testing this quadratic hypothesis in this
reparametrized APC model rather than another form of model is that this model has
isolated the non-linear portion of age from the non-linear portion of cohort and period;
therefore the test of the quadratic age effect is not contaminated by period or cohort
effects.

We can perform this quadratic test as follows, using the linearHypothesis function
from the package car (Fox and Weisberg, 2019).

> allageDD <- rownames(logwage_ad$coefficients.canonical)[grep("DD_age",

+ rownames(logwage_ad$coefficients.canonical))]

> ageDD1 <- allageDD[-1]

> ageDD2 <- allageDD[-length(allageDD)]

> quadratic_hyp <- paste(ageDD2, ageDD1, sep = " = ")

> rm(list=ls(pattern="ageDD"))

> linearHypothesis(logwage_ad$fit, quadratic_hyp, test="F")

Linear hypothesis test

Hypothesis:

DD_age_27 - DD_age_28 = 0

DD_age_28 - DD_age_29 = 0

DD_age_29 - DD_age_30 = 0

DD_age_30 - DD_age_31 = 0

DD_age_31 - DD_age_32 = 0

DD_age_32 - DD_age_33 = 0

DD_age_33 - DD_age_34 = 0

DD_age_34 - DD_age_35 = 0

DD_age_35 - DD_age_36 = 0

DD_age_36 - DD_age_37 = 0

DD_age_37 - DD_age_38 = 0

DD_age_38 - DD_age_39 = 0

DD_age_39 - DD_age_40 = 0

DD_age_40 - DD_age_41 = 0

DD_age_41 - DD_age_42 = 0

DD_age_42 - DD_age_43 = 0

DD_age_43 - DD_age_44 = 0

DD_age_44 - DD_age_45 = 0

DD_age_45 - DD_age_46 = 0

DD_age_46 - DD_age_47 = 0

DD_age_47 - DD_age_48 = 0

DD_age_48 - DD_age_49 = 0

DD_age_49 - DD_age_50 = 0
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DD_age_50 - DD_age_51 = 0

DD_age_51 - DD_age_52 = 0

DD_age_52 - DD_age_53 = 0

DD_age_53 - DD_age_54 = 0

DD_age_54 - DD_age_55 = 0

Model 1: restricted model

Model 2: logwage ~ hasdegree + age_slope + cohort_slope + DD_age_27 +

DD_age_28 + DD_age_29 + DD_age_30 + DD_age_31 + DD_age_32 +

DD_age_33 + DD_age_34 + DD_age_35 + DD_age_36 + DD_age_37 +

DD_age_38 + DD_age_39 + DD_age_40 + DD_age_41 + DD_age_42 +

DD_age_43 + DD_age_44 + DD_age_45 + DD_age_46 + DD_age_47 +

DD_age_48 + DD_age_49 + DD_age_50 + DD_age_51 + DD_age_52 +

DD_age_53 + DD_age_54 + DD_age_55

Res.Df Df F Pr(>F)

1 2410

2 2382 28 1.2968 0.1368

Again, a Wald test is used, with comparison to an F distribution. The resulting test
statistic of 1.297, with degrees of freedom (28, 2382), has a p-value of 0.14. This
indicates that the hypothesis of a quadratic relationship between the age of the worker
and his log wage cannot be rejected.

Analysis of industrial job

The code can be used in a very similar way to investigate the relationship between a
binary variable and age, period, and cohort. I illustrate this by building a model for
whether or not the worker has an industrial job. Again, the analysis begins with a table
comparing the time-saturated (TS) model, the full APC model, and submodels of the
APC model.

> indust_job_tab <- apc.indiv.model.table(Wage3, dep.var="indust_job",

+ covariates="hasdegree",

+ model.family="binomial",

+ test="LR", dist= "Chisq", TS=TRUE)

[1] "converged after 9 iterations"

> indust_job_tab$table

LR-test vs TS df p-value LR-test vs APC df p-value AIC Loglihood

TS NA NA NA NA NA NA 3292.004 -1428.002

APC 169.954 145 0.077 NA NA NA 3171.957 -1512.979

AP 235.345 180 0.004 65.391 35 0.001 3167.349 -1545.674

AC 179.286 150 0.052 9.332 5 0.097 3171.290 -1517.645
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PC 206.755 174 0.045 36.801 29 0.151 3150.759 -1531.379

Ad 245.441 185 0.002 75.487 40 0.001 3167.444 -1550.722

Pd 271.016 209 0.002 101.062 64 0.002 3145.019 -1563.510

Cd 216.139 179 0.030 46.185 34 0.079 3150.142 -1536.071

A 245.464 186 0.002 75.510 41 0.001 3165.467 -1550.734

P 275.273 210 0.002 105.319 65 0.001 3147.276 -1565.638

C 216.345 180 0.033 46.391 35 0.094 3148.348 -1536.174

t 280.951 214 0.001 110.997 69 0.001 3144.954 -1568.477

tA 281.184 215 0.002 111.230 70 0.001 3143.188 -1568.594

tP 285.606 215 0.001 115.652 70 0.000 3147.610 -1570.805

tC 280.952 215 0.002 110.999 70 0.001 3142.956 -1568.478

1 285.784 216 0.001 115.830 71 0.001 3145.788 -1570.894

Note that here the model family is binomial, and the test used is a likelihood ratio
test. The time-saturated model here is estimated by a custom Newton-Rhapson
iteration procedure, so part of the output of this table is a report on the behaviour of
that algorithm. If the print statement does not report convergence, the Newton
Rhapson parameters should be modified using the option NR.controls until
convergence is achieved - for example by increasing the number of iterations.

Looking at the estimated table, we see that the AIC is minimised towards the end of
the table, by the tC model. However, the likelihood ratio tests comparing the tC model
to the TS and APC models reject the restriction. Indeed most restrictions are rejected
by the likelihood ratio test; the APC model itself is barely accepted as a restriction on
the TS model. It is therefore difficult to select a model from this table. Ultimately I
favour the PC model; it has one of the lower AIC values, is the most supported
sub-model against the APC model, and is almost supported against the TS model. That
said, this setting is one in which there is a strong argument that the APC model and its
submodels do a poor job of capturing the time variation in the data, and some other
reduction of the TS model should instead be used.

> indust_job_pc <- apc.indiv.est.model(Wage3, dep.var="indust_job",

+ covariates="hasdegree",

+ model.family="binomial",

+ model.design="PC")

> indust_job_pc$coefficients.covariates

Estimate Std. Error z value Pr(>|z|)

[1,] -1.242142 0.09061988 -13.70717 9.19748e-43

> apc.plot.fit(indust_job_pc)

WARNING apc.plot.fit: sdv large for plot 5 - possibly not plotted

Again, I directly estimate the preferred model using apc.indiv.est.model and
inspect the estimated non-linearities in period and cohort using apc.plot.fit. There is
a somewhat interesting pattern in the period effects, where there appears to be a
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substantial acceleration in the probability of having an industrial job in 2008; given that
these are shipping workers, this may reflect a streamlining of operations during the
financial crisis. However, there is no clear pattern in the cohort non-linearities. The
effect of having a degree on the probability of having an industrial job is, unsurprisingly,
significant and negative.

Extensions

The data I have been using does not include survey weights. However if they were
present in the data, they could be quite easily added to all of the above analysis by
simply specifying the name of the weight variable using the option wt.var in all of the
above commands. It should be noted that since models incorporating survey weights are
not estimated by maximum likelihood, the likelihood column is omitted from the data
and one must use Wald tests rather than likelihood ratio tests. A psuedo-AIC is
reported; see Lumley (2004, 2019) for details. Additionally, estimation of the
time-saturated model has not yet been implemented for survey data, and so that will
not be reported.

Sometimes the fact that the earliest and latest cohorts are only observed in one or
two age-period cells can lead to instability in the estimates. This can be seen to some
extent in the PC model for having an industrial job; the magnitude of the estimate for
the earliest cohort is very large. This problem can be addressed by “censoring” those
early and late cohorts out of the data, by first dropping them from the data using
standard R techniques and then specifying the options n.coh.excl.start and
n.coh.excl.end. The structure of this particular dataset is such that it can be
displayed as a rectangle in age-period space. We say the data has an “age-period”
format. In this case, it is the cohort double-differences where instability will appear and
censoring should occur. However, not all data is of the “age-period” format. For example
in the next section we will deal with data in “period-cohort” format; in that case, one
would want to censor ages, using n.age.excl.start and n.age.excl.end. One might
also have “age-cohort” data, in which case periods could be censored.

3 Panel data

To illustrate the use of the code for panel data, I use the PSID7682 data from the AER

package Kleiber and Zeileis (2008). This is an excerpt from the Panel Survey of Income
Dynamics, covering 595 individuals over a seven-year period from 1976-1982 which has
been used in economics textbooks such as Baltagi (2005) and Greene(2008). It is
therefore an age-period dataset. Note that in this data the conflated variables are not
age, period, and cohort, but rather years of work experience, period, and year of
entering the workforce. There is an equivalent identification problem to the APC
problem among these three variables, see for example Heckman and Robb (1985).
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Data assessment and cleaning

I begin by inspecting the data. After initially displaying the data in an age-period
format, it became clear that the period-cohort format was more appropriate.

> library("plyr")

> library("reshape")

> library("AER")

> data("PSID7682")

> summary(PSID7682)

experience weeks occupation industry south smsa

Min. : 1.00 Min. : 5.00 white:2036 no :2518 no :2956 no :1442

1st Qu.:11.00 1st Qu.:46.00 blue :2129 yes:1647 yes:1209 yes:2723

Median :18.00 Median :48.00

Mean :19.85 Mean :46.81

3rd Qu.:29.00 3rd Qu.:50.00

Max. :51.00 Max. :52.00

married gender union education ethnicity

no : 773 male :3696 no :2649 Min. : 4.00 other:3864

yes:3392 female: 469 yes:1516 1st Qu.:12.00 afam : 301

Median :12.00

Mean :12.85

3rd Qu.:16.00

Max. :17.00

wage year id

Min. : 100.0 1976:595 1 : 7

1st Qu.: 599.0 1977:595 2 : 7

Median : 800.0 1978:595 3 : 7

Mean : 882.9 1979:595 4 : 7

3rd Qu.:1046.0 1980:595 5 : 7

Max. :5100.0 1981:595 6 : 7

1982:595 (Other):4123

> AP_count <- count(PSID7682, c("experience", "year"))

> AP_show <- cast(AP_count, experience~year)

> AP_show[1:10,]

experience 1976 1977 1978 1979 1980 1981 1982

1 1 8 NA NA NA NA NA NA

2 2 10 8 NA NA NA NA NA

3 3 35 10 8 NA NA NA NA

4 4 19 35 10 8 NA NA NA

5 5 26 19 35 10 8 NA NA
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6 6 23 26 19 35 10 8 NA

7 7 30 23 26 19 35 10 8

8 8 25 30 23 26 19 35 10

9 9 15 25 30 23 26 19 35

10 10 34 15 25 30 23 26 19

The missing corners of the data show that this is actually cohort-period data (i.e. take a
given set of people and follow them for X years, rather than observe people within an
age group in a series of years).

> period <- as.numeric(PSID7682$year) + 1975

> entry <- period - PSID7682$experience

> psid <- cbind(PSID7682, period, entry)

> CP_count <- count(psid, c("entry", "year"))

> CP_show <- cast(CP_count, entry~year)

> CP_show[1:10,]

entry 1976 1977 1978 1979 1980 1981 1982

1 1931 1 1 1 1 1 1 1

2 1932 2 2 2 2 2 2 2

3 1936 6 6 6 6 6 6 6

4 1937 2 2 2 2 2 2 2

5 1938 3 3 3 3 3 3 3

6 1939 8 8 8 8 8 8 8

7 1940 6 6 6 6 6 6 6

8 1941 10 10 10 10 10 10 10

9 1942 13 13 13 13 13 13 13

10 1943 8 8 8 8 8 8 8

It is easily seen from CP_show that this is a balanced panel; the number of
observations in a given cohort does not change over period. This makes it quite easy to
see how we should restrict the data to ensure a sufficient number of observations in each
cell. Again, I tidy some of the variables that will be used in the analysis, and rename
the variables corresponding to age, period, and cohort.

> psid2 <- psid[psid$entry >= 1939, ]

> # which variables do we want to use?

> logwage <- log(psid2$wage)

> inunion <- ifelse(psid2$union == "yes", 1, 0)

> insouth <- ifelse(psid2$south == "yes", 1, 0)

> bluecollar <- ifelse(psid2$occupation == "blue", 1, 0)

> # also education which is a continuous covariate

>

> psid3 <- cbind(psid2, logwage, inunion, insouth, bluecollar)

> names(psid3)[names(psid3) %in% c("experience","entry")] <- c("age","cohort")
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It is important to visualise the data before estimating any models. This is done using
ggplot2 in the same way as for repeated cross-sectional data. However, since this is
period-cohort data, I plot cohort (year of entry) instead of age (experience) on the
Y-axis.

> library("ggplot2")

> mean_logwage <- ddply(psid3, .variables=c("period", "cohort"),

+ function(dfr, colnm){mean(dfr[, colnm])}, "logwage")

> names(mean_logwage)[3] <- "Mean_logwage"

> plot_mean_logwage <- ggplot(mean_logwage, aes(period, cohort)) +

+ theme_bw() +

+ xlab('\n Period') +

+ ylab('Entry \n') +

+ geom_tile(aes(fill = Mean_logwage)) +

+ scale_fill_gradientn(colours=c("red", "blue"),

+ space = 'Lab', name="Mean logwage \n") +

+ scale_x_continuous(expand=c(0,0)) +

+ scale_y_continuous(expand=c(0,0)) +

+ theme(axis.text=element_text(size=18),

+ axis.title=element_text(size=24, face="bold"),

+ legend.title=element_text(size=20, face="bold"),

+ legend.key.size = unit(1, "cm"),

+ legend.text=element_text(size=18))

> plot_mean_logwage

I display the visualization in figure ??; note that in the labelling I have replaced
“cohort” with “entry”. There is a clear period effect; the colour becomes more blue
towards the right of the graph, indicating higher wages in later years. There is also
evidence of cohort effects, appearing as horizontal bands of colour. Those starting work
around 1968, for instance, appear to have lower wages throughout their lives. That said,
with a small panel we must be careful of confounding between cohort effects and
individual fixed effects. Finally, age effects are evidenced by the predominance of red in
the top-left corner of the graph; this is the area where individuals have the least work
experience (those entering the workforce in the 1970s, observed in the 1970s), and we
can unsurprisingly see that lack of experience means low wages.

To begin with, I consider a model with no covariates, just to get a sense of how the
patterns seen in the graph above are reflected in a formal analysis. As was the case with
repeated cross-sectional data, I begin with a table containing the full APC model and all
submodels. Note that the time-saturated (TS) model is not currently implemented for
panel data. Additionally, since the panel data model I consider (the random effects
model) is not estimated by maximum likelihood, I lose the likelihood and AIC columns.
Therefore model selection is by Wald test only.

> library(apc)

> panel_tab <- apc.indiv.model.table(psid3, dep.var="logwage",
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+ model.family = "gaussian", test="Wald", dist="F",

+ plmmodel="random", id.var="id")

> panel_tab$table

Wald (F) vs APC DF( * , 3983) p-value

AP 1.974 35 0.001

AC 6.300 5 0.000

PC 2.593 41 0.000

Ad 2.510 40 0.000

Pd 2.388 76 0.000

Cd 3.278 46 0.000

A 48.106 41 0.000

P 2.701 77 0.000

t 2.790 81 0.000

tA 29.732 82 0.000

tP 3.079 82 0.000

It is clear from the table, seen in ??, that none of the restrictions of the APC model
pass muster. It is also worth noticing that some of the submodels seen in previous tables
do not appear here. Those are: the C, tC, and 1 models. This is because random effects
estimation requires at least one explanatory variable which changes over time within an
individual, and these models do not satisfy this requirement.

The model selected by this analysis is, clearly, the APC model, and so I proceed to
estimate and plot that using the standard tools.

> panel_apc <- apc.indiv.est.model(psid3, dep.var="logwage",

+ model.family="gaussian",

+ plmmodel="random", id.var="id")

> apc.plot.fit(panel_apc)

WARNING apc.plot.fit: sdv large for plot 5 - possibly not plotted

There is clear concavity in both age and period, while the non-linearity in cohort,
despite being significant, lacks a clear pattern.

This model can also be estimated using fixed effects. This changes the set of models
which are available, since the fixed effects are perfectly collinear with both the cohort
double-differences and the combined slope that is estimated in the cohort dimension.
The set of available models are as follows: FAP, FA, FP, Ft. These stand for “fixed
effects with age and period non-linearities”, “fixed effects with age non-linearities”, “fixed
effects with period non-linearities”, and “fixed effects with trend”. Note that FAP, FA,
and FP all also contain the single linear trend that can be identified in these models,
which is represented in the age dimension and combines the linear effects of age and
period.
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> panel_tab_fe <- apc.indiv.model.table(psid3, dep.var="logwage",

+ covariates = c("inunion", "insouth",

+ "bluecollar"),

+ model.family = "gaussian", test="Wald", dist="F",

+ plmmodel="within", id.var="id")

> panel_tab_fe$table

Wald (F) vs FAP DF( * , 3436) p-value

FA 6.108 5 0

FP 2.557 41 0

Ft 3.215 46 0

Again, restrictions not accepted

> panel_fap <- apc.indiv.est.model(psid3, dep.var="logwage",

+ covariates = c("inunion", "insouth",

+ "bluecollar", "education"),

+ model.family = "gaussian",

+ plmmodel="within", id.var="id",

+ model.design="FAP")

> panel_fap$coefficients.covariates

Estimate Std. Error t-value Pr(>|t|)

inunion 0.028285862 0.01513594 1.86878848 0.06173727

insouth 0.002419661 0.03404803 0.07106612 0.94334927

bluecollar -0.019586238 0.01400181 -1.39883641 0.16195230

> apc.plot.fit(panel_fap)

The first step is to construct a table which compares all submodels to the most
general model, which in the context of fixed effects is the FAP model. This table is not
shown, as the conclusion is straightforward; even with the large set of covariates and the
individual fixed effects, none of the submodel reductions is accepted. The FAP model is
then estimated. The age and period non-linearities are largely unchanged from the
random effects model, indicating that they are robust to the introduction of fixed effects
and covariates. The covariate estimates are also shown. Most are not significant, which
may be due to limited within-individual variation in those variables. Note that
education was not included as a covariate: it has no within-individual variation and
therefore its effect cannot be identified in a fixed effects model.

Extensions

It should be noted that at present panel data analysis only works for OLS models, so
binary outcomes must be analysed in a linear probability framework. The time-saturated
model is also not implemented for panel data. The censoring of cohorts, ages, or periods
to improve the stability of estimates, described in section 2, is available for panel data.

In addition to the random and fixed effects models illustrated here, it is also possible
to estimate panel data using pooled OLS. However, this is really no different to repeated
cross section analysis.
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