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Introduction

This vignette is an introduction to the basic toolkit of the bunching package, and shows examples of how it
can be applied to data that feature bunching. The package offers a Ćexible implementation of the bunching
estimator. This was originally developed to tackle questions in labor and public economics, but can be applied
to any setting where a constrained optimization problem involves a discontinuity in a constraint, which can
be related to a discontinuity in the observed density of the decision variable. The main aim is to measure
behavioral responses to such changes in incentives, by estimating how much excess mass, in an otherwise
smooth distribution, can be attributed to the responses to a discrete change in constraints at that same level.

bunching allows the user to conduct such bunching analysis in a kink or notch setting and returns a rich
set of results. Important features of the package include functionality to control for (different levels of)
round-number bunching or other bunching masses within the estimation bandwidth, options to split bins
by placing the bunching point as the minimum, median or maximum in its bin (for robustness analysis),
and can return estimates of both parametric and reduced-form versions of elasticities associated with the
bunching mass. It also provides an exploratory visualization function to speed up pre-analysis, and produces
plots in the Chetty et al. (2011) style with lots of options on editing the plot appearance. Further, it returns
bootstrapped estimates of all the main estimable parameters, which can be used for further analysis such as
incorporation into structural models that rely on bunching moments.

This vignette proceeds by explaining how the bunching package estimates the bunching mass, and then
provides several examples using simulated data with kinks and notches. It does not cover any theory
behind the bunching estimator. For a review of bunching optimization theory, see the companion vignette
bunching_theory.

Overview of the bunching package

Main functions and parameter input options

bunchit() is the main function of the package. This does all the analysis and returns a range of results,
including a bunching plot. Another function, designed for pre-analysis, is plot_hist(). This can be used to
inspect the binned data and plot the density of a given vector without having to run any estimations. A
quick visualization can help pick appropriate parameters for the inputs required by bunchit().

The main parameters the user must choose for bunchit() are:

• z_vector: the name of the (unbinned) vector to be analyzed
• zstar: the location of the bunching point
• binwidth: how wide the grouping bins should be
• bins_l and bins_r: how many bins to the left and right of zstar to consider in the bandwidth
• t0 and t1: the marginal (average) tax rates below and above zstar in a kink (notch) setting

Note that without inputs for t0 and t1, no elasticity can be calculated which will throw an error. To avoid
this estimation process, use plot_hist() for exploratory analysis, which requires these same inputs except

1



for t0 and t1.

The rest of the inputs have set defaults. Among these, the ones that the user may want to experiment with
(and which affect estimation) are:

• binv: This is the bin version, which controls how the bins are grouped around zstar. The default
is "median", which places zstar in the median position in its bin. The other options are "min" and
"max", which create bins with zstar being in the minimum or maximum position. Default is "median"

• poly: The order of the polynomial used to Ąt the bin counts. Default is 9

• bins_excl_l and bins_excl_r: How many bins to the left and right of zstar to also include in the
bunching (i.e. ŞexcludedŤ) region. This is particularly important when the density exhibits diffuse
bunching around zstar. Defaults are 0

• extra_fe: Other Ąxed points, featuring a bunching mass (or hole), that the counterfactual estimate
should also control for. This is useful when there is another focal point in the bandwidth, which can
affect the estimate of the bunching mass at zstar. Default is NA

• rn: Round numbers (up to two) to control for through Ąxed effects. Default is NA

• n_boot: How many bootstrapped samples to use to estimate (residual-based) standard errors. Default
is 100

• correct: Whether to correct for the integration constraint. Default is TRUE

• correct_above_zu: When applying the integration constraint correction, this controls where to start
shifting the counterfactual distribution up from. If set to TRUE, it only shifts bins above zU (upper
bound of bunching region). Default is FALSE, which shifts all bins above z∗

• notch: Whether the analysis is for a notch or a kink. Default is FALSE (kink)
• force_notch: In the case of a notch, whether to force the userŠs choice of bins_excl_r. The default

is FALSE, whereby the upper bound of the excluded region is estimated through an iterative process
that equates the bunching and missing masses

• e_parametric: Whether to estimate elasticities using the parametric form or the reduced-form speciĄ-
cations. Default is FALSE (non-parametric)

• e_parametric_lb and e_parametric_ub: If both notch = TRUE and e_parametric = TRUE are cho-
sen, the elasticity is found by a non-linear equation solver. e_parametric_lb and e_parametric_ub

set the lower and upper bound of possible solution values for the elasticity. Defaults are 1e-04 and 3

respectively
• seed: A value used as a seed for reproducability of standard errors. Default is NA

The rest of the inputs control the plotŠs output, and are explained in the last section of the vignette.

How does bunchit() estimate the bunching mass?

Using the packageŠs helper functions bin_data() and prep_data_for_fit(), the chosen vector is binned
into groups of binwidth δ around the bunching point z∗. The following speciĄcation is then run:

cj =

p
∑

i=0

βi(zj)i +

zU
∑

i=zL

γi✶[zj = i] +
∑

r∈R

ρr✶

[zj

r
∈ N

]

+
∑

k∈K

θk✶

[

zj ∈ K ∧ zj /∈ [zL, zU ]
]

+ vj

cj is the observation count in bin j, p is the order of polynomial used to Ąt the counts, and zL and zU stand
for the lower and upper region that deĄne the bunching region. The speciĄcation also allows the user to
control for bunching at round numbers in a set R (deĄned by rn), and for other Ąxed effects in a set K
(extra_fe) that feature a bunching mass in the estimation bandwidth outside the bunching range z ∈ [zL, zU ]
but that are not associated with z∗ (through the ρ and θ coefficient vectors respectively).

The speciĄcation allows for (up to) two different levels of round number bunching. This is useful in cases
that typically feature bunching at round numbers (such as earnings distributions), and (may also) exhibit
uneven bunching because some numbers are ŞrounderŤ than others. For instance, there could be bunching at
all multiples of 1000Šs and 500Šs, but bunching at the former being much stronger than at the latter. Not
controlling for round number bunching can signiĄcantly bias the bunching estimate upwards if z∗ is also a
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round number. This is because some of the observed bunching will be driven by factors unrelated to the
change in incentives driven by the discrete change in the constraint that we want to attribute the bunching
to. Similarly, not controlling for other bunching masses can exert a downward bias in the bunching estimate
at z∗ by biasing the counterfactual estimate upwards.

Given this estimation strategy, the predicted counterfactual density in the absence of the kink is given by:

B̂0 =

zU
∑

j=zL

(cj − ĉj)

and in the case of (the absence of) a notch:

B̂0 =

z∗

∑

j=zL

(cj − ĉj)

where ĉj is the estimated count excluding the contribution of the dummies in the bunching region:

ĉj =

p
∑

i=0

β̂i(zj)i +
∑

r∈R

ρ̂r✶

[zj

r
∈ N

]

+
∑

k∈K

θ̂k✶

[

zj ∈ K ∧ zj /∈ [zL, zU ]
]

B̂0 estimates the excess number of observations locating at z∗ due to the kink or notch. To be able to
compare bunching masses across different kinks or notches that feature varying heights of counterfactuals, we
use a normalization where we divide the total excess mass with the height of the counterfactual at z∗. This
returns the normalized excess mass, which is a central parameter of interest besides elasticity estimates:

b̂0 =
B̂0

ĉ0

The integration constraint correction

The initial estimate B̂0 will be slightly biased, because it ignores the fact that those with counterfactual
earnings above z∗ + ∆z∗ (those of the marginal buncher) are also exhibiting an interior response to the
introduction of a kink or notch at z∗. Hence, what we observe in the actual distribution above the bunching
region is not the true counterfactual, since this has been shifted. Technically, it is not straightforward to
fully account for this because the response is coming from all levels above the bunching region, including
those beyond our estimation bandwidth. A feasible solution is to approximate this total response to that
among those we do observe in our estimation bandwidth. With a large enough bandwidth (and not extremely
large bunching estimates), this typically yields good results. The solution, named the integration constraint
correction, is to shift the counterfactual distribution lying to the right of z∗ upwards until the count of
observations under the empirical distribution equals that under the counterfactual distribution. This is done
by running:

cj



1+✶[j > zU ]
B̂0

∞
∑

j=z∗+1

cj



=

p
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ρr✶
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r
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]

+
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zj ∈ K∧zj /∈ [zL, zU ]
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This is estimated by iteration until a Ąxed point is found. The Ąnal B̂ is then based on this updated
counterfactual. Note that an alternative formulation is to implement the upward shift starting from bin
j = zU +1 instead of z∗. Which alternative used has typically very little effect on the actual bunching estimate
(because the counterfactual should not shift much at z∗), but the latter may over-shift the counterfactual in
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bins above the bunching region. The next sub-section explains how this may be an issue when setting zU in
the notch setting. The package allows the user to conduct robustness checks of the effect of each alternative,
by choosing the preferred version through the input parameter correct_above_zu (the default is set to
FALSE, i.e. shifting starts at the right of z∗).

How are zL and zU set?

With kinks, both can be set visually as these will be obvious from a simple inspection of the density. With
notches, it is typically easy to visually determine the location of zL but not of zU , because it must span both
the bunching mass and hole, and the latter could be very diffuse. In this case, it is possible to estimate zU

conjointly with the bunching mass through an iterative procedure relying on the intuition that the bunching
mass must be equal to the missing mass. The approach starts at z∗, shifting zU marginally rightwards until
this equality is reached. bunchit() allows the user to choose between estimating zU through this iterative
procedure, or by forcing a particular level of zU instead. The latter can be done by specifying a given value
for bins_excl_r and setting force_notch = TRUE (the default is FALSE).

Note that in the case of notches, there is a further complication when choosing to Ąnd zU iteratively, while
also applying the integration constraint correction and setting the shifting option correct_above_zu to
TRUE. This approach may shift the counterfactual estimate signiĄcantly upwards (in some cases, too much!),
especially if the bunching mass is very large, leading to estimates of zU quite far from z∗. While this will not
usually affect the bunching estimate by much, it can distort the appearance of the counterfactual estimate
to the right of z∗. It will also reduce the estimate of α, the proportion of observations ŞstuckŤ in the hole
between z∗ and zD. It is advisable to try different options for these input parameters to Ąnd which one works
best.

What does bunchit() return?

The function returns a list with the following:

• plot: A plot (a ggplot2 object) with the observed and estimated counterfactual
• data: A dataframe with the binned data and other generated variables used for the bunching estimation
• cf: The estimated counterfactual density
• model_fit: The coefficients of the Ątted model
• B: The estimated bunching mass
• B_vector: A vector of bootstrapped estimates of B

• B_sd: The standard deviation of B_vector

• b: The normalized estimated bunching mass
• b_vector: A vector of bootstrapped estimates of b

• b_sd: The standard deviation of b_vector

• e: The estimated elasticity
• e_vector: A vector of bootstrapped estimates of e

• e_sd: The standard deviation of e_vector

• alpha: The estimated proportion of observations in the hole (in a notch setting only)
• alpha_vector: A vector of bootstrapped estimates of alpha (in a notch setting only)
• alpha_sd: The standard deviation of alpha_vector (in a notch setting only)
• zD: The upper bound of the dominated region (in a notch setting only)
• zD_bin: The bin in which the upper bound of the dominated region is in (in a notch setting only)
• zU_bin: The bin in which the upper bound of the dominated region is in (in a notch setting only,

relevant where zU is estimated internally, otherwise it will match the choice of bins_exl_r)
• marginal_buncher: The estimated counterfactual level of the marginal buncher, i.e. z∗ + ∆z∗

• marginal_buncher_vector: A vector of bootstrapped estimates of marginal_buncher

• marginal_buncher_sd: The standard deviation of marginal_buncher_vector
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Examples

The package’s example data

bunching comes with some simulated example data, which can be loaded using data(bunching_data). Note
that this will return a ŞlazyŤ load, so it will not appear as data unless you view or use it in a function. The
data consists of a dataframe with two vectors of earnings, named kink_vector and notch_vector. Both
feature bunching at an earnings level of 10000, and range between 8000 and 12000.

Exploring the data using plot_hist()

LetŠs load the data and visualize the two vectors using the packageŠs plot_hist() function. WeŠll set
binwidth to 50 and bins_l and bins_r to 40 to get a plot with a bandwidth of 2000 around zstar, which
is at 10000.

data(bunching_data)

plot_hist(z_vector = bunching_data$kink_vector,

zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40,

p_title = "Kink", p_title_size = 11)$plot

plot_hist(z_vector = bunching_data$notch_vector,

zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40,

p_title = "Notch", p_title_size = 11)$plot
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Both plots show sharp bunching at z∗, with the notch case also exhibiting a diffuse hole to the right, conĄrming
they are appropriate for bunching analysis. The next section builds on these to show several examples of how
the main function, bunchit(), can be used to apply the bunching estimator, including cases that feature
diffuse bunching, round number bunching and other bunching points in the bandwidth. We Ąrst focus on the
kink case.
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Kinks

Kink example 1: Sharp bunching

The Ąrst example is based on the distribution of our dataŠs kink_vector, as plotted above. To apply the
estimator, we need to choose an appropriate polynomial, as well as lower and upper limits of the bunching
region. Since there does not appear to be any diffuse bunching around 10000, we can simply set the bunching
region to be the kink, i.e. bins_excl_l and bins_excl_r can be left to their default values of zero. The
distribution also looks fairly smooth outside the bunching region, so we can use a moderate level of polynomial
order for Ątting purposes, say poly = 4. For expositional purposes, letŠs also restrict the bandwidth to 20
bins below and above z∗, by setting bins_l and bin_r to 20. We also need to choose values for the marginal
tax rate below and above the kink, which weŠll set to t0 = 0 and t1 = 0.2.

kink1 <- bunchit(z_vector = bunching_data$kink, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

p_title = "Kink analysis")

# return plot

kink1$plot
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This shows the standard output of the functionŠs plot object. The black line with circular markers represents
the true density, and the maroon line the counterfactual estimate. The vertical red line marks zstar. LetŠs
next return some of the estimated parameters:

# Bunching mass

kink1$B

#> [1] 629.5111

# Normalized bunching mass

kink1$b

#> [1] 1.822088

# Elasticity

kink1$e

#> [1] 0.0455522

We can also report the estimates of the normalized bunching mass and elasticity directly on the plot. This
is done by simply setting p_b = TRUE and p_e = TRUE. This will also display the standard errors, so letŠs
set a seed to make these reproducible. As an example, weŠll also manually set their y-position through
p_b_e_ypos.

kink1_param <- bunchit(z_vector = bunching_data$kink, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

p_b = TRUE, p_e = TRUE, p_b_e_ypos = 870, seed = 1,
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p_title = "Kink with b and e estimates on plot")

kink1_param$plot

b = 1.822(0.616)

e = 0.046(0.015)
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Kink with b and e estimates on plot

Note how the counterfactual lies somewhat above the actual density, for bins above z∗. This is because the
estimator applied the integration constraint correction, which is the default setting. We can override this by
setting correct = FALSE. The output in this case is:

kink1_no_corr <- bunchit(z_vector = bunching_data$kink, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

p_b = TRUE, p_e = TRUE, p_b_e_ypos = 870, seed = 1,

correct = FALSE,

p_title = "Kink without integration constraint correction")

kink1_no_corr$plot

b = 1.989(0.069)

e = 0.05(0.002)
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As expected, the counterfactual to the right of z∗ is now lower. The effect of this is to pull the height of
the counterfactual at z∗ to a slightly lower level than before, leading to a larger estimate for the normalized
excess mass of 1.9885156 compared to 1.8220879.
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Kink example 2: Diffuse bunching

Next, we consider a case where bunching is diffuse around z∗:

# create diffuse bunching

bpoint <- 10000; binwidth <- 50

kink2_vector <- c(bunching_data$kink_vector,

rep(bpoint - binwidth,80), rep(bpoint - 2*binwidth,190),

rep(bpoint + binwidth,80), rep(bpoint + 2*binwidth,80))

# visualization

plot_hist(z_vector = kink2_vector, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, p_title = "Distribution with diffuse bunching")$plot
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Distribution with diffuse bunching

This case exhibits diffuse bunching, spanning the region two bins below to two bins above z∗. This suggests
optimization frictions, where agents are bunching but cannot precisely target the kink. To account for this,
we can set bins_excl_l = 2 and bins_excl_r = 2.

kink2 <- bunchit(z_vector = kink2_vector, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

bins_excl_l = 2, bins_excl_r = 2, correct = FALSE,

p_b = TRUE, p_e = TRUE, p_b_e_ypos = 870,

p_title = "Kink with diffuse bunching")

kink2$plot

b = 3.32(0.165)

e = 0.083(0.004)
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The plot now also marks the bounds of the bunching region by default, using vertical dashed lines. The
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resulting b estimate is 3.3195398.

Kink example 3: Round number bunching

Distributions may also exhibit bunching for reasons unrelated to the examined discontinuity. This is common
for instance when analyzing earnings or proĄts, which tend to be set at or reported in round numbers. If z∗

is also at a round number, then some (or all) of the bunching may actually just be because of the round
number bunching, and not of the discontinuity in question. For empirical examples, see for instance, Clifford
and Mavrokonstantis (2019) and Mavrokonstantis and Seibold (2020). In such cases, we want to residualize
this effect by introducing controls. As an example, consider the following distribution:

# create round number bunching

rn1 <- 500; rn2 <- 250; bpoint <- 10000

kink3_vector <- c(bunching_data$kink_vector,

rep(bpoint + rn1, 270),rep(bpoint + 2*rn1,230),

rep(bpoint - rn1,260), rep(bpoint - 2*rn1,275),

rep(bpoint + rn2, 130), rep(bpoint + 3*rn2,140),

rep(bpoint - rn2,120), rep(bpoint - 3*rn2,135))

plot_hist(z_vector = kink3_vector, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, p_freq_msize = 1.5,

p_title = "Distribution with round number bunching")$plot
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Distribution with round number bunching

This distribution features the usual bunching at z∗, but also clear round number bunching at multiples of 500
and 250. Moreover, it appears that there are different magnitudes of round number bunching, with that at
multiples of 500 being larger than at 250 multiples. This can occur when some numbers are ŞrounderŤ than
others and therefore get targeted more. In this case, we need to account for them separately. bunchit()

allows the user to specify (up to) two different levels of round numbers to control for, by passing a vector to
rn. This is the result:

kink3_rn<- bunchit(z_vector = kink3_vector, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

correct = FALSE, p_b = TRUE, seed = 1, rn = c(250,500),

p_title = "Kink controlling for round numbers")

kink3_rn$plot
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b = 0.667(0.046)
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Kink controlling for round numbers

The counterfactual now features spikes at round number multiples of 250 and 500, accounting for the fact
that we would have observed such a distribution with bunching masses even in the absence of a kink at z∗.
Consequently, the counterfactual at z∗ also features a spike, implying that much of the bunching is driven by
the targeting of round numbers instead of the actual kink.

If we had not controlled for these, the result would have been:

kink3_no_rn <- bunchit(z_vector = kink3_vector, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

correct = FALSE, p_b = TRUE, seed = 1,

p_title = "Kink not controlling for round numbers")

kink3_no_rn$plot

b = 1.876(0.252)

0

250

500

750

1000

9000 9500 10000 10500 11000

kink3_vector

C
o
u
n
t
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Notice how the counterfactual at z∗ is much lower in this case, resulting in a much larger estimated b of
1.8755851, instead of the corrected estimate of 0.6666706.

Kink example 4: Other bunching mass in bandwidth

Another case that may be empirically relevant is that of another bunching mass, unrelated to round number
bunching, but present in the estimation bandwidth. This can occur when the kink of interest has been
recently created by shifting a former kink in the vicinity, creating new bunching mass but also leaving behind
residual mass, presumably because optimization frictions precluded those bunching at the former kink to
de-bunch.1 Here is an example of such a case:

1For a study analyzing such a setting, see Mavrokonstantis and Seibold (2020).
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# create extra bunching mass

kink4_vector <- c(bunching_data$kink_vector, rep(10200,540))

plot_hist(z_vector = kink4_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, p_freq_msize = 1.5,

p_title = "Distribution with extra bunching mass in bandwidth")$plot
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Distribution with extra bunching mass in bandwidth

This distribution exhibits an extra bunching mass at a value of z = 10200, which cannot be related to round
number bunching. Controlling for this through extra_fe, we get:

kink4_fe <- bunchit(z_vector = kink4_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 6, t0 = 0, t1 = .2,

bins_excl_l = 0, bins_excl_r = 0, correct = FALSE,

p_b = TRUE, extra_fe = 10200,

p_title = "Kink controlling for extra mass")

kink4_fe$plot

b = 2.028(0.062)
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Kink controlling for extra mass

By adding this control, the counterfactual goes exactly through the bunching mass at z = 10200. If we had
also applied the integration constraint correction, then it would lie slightly above it due to the correctionŠs
upward shift:

kink4_fe_corrected <- bunchit(z_vector = kink4_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 6, t0= 0 , t1 = .2,

correct = TRUE, p_b=TRUE, extra_fe = 10200, seed = 1,

p_title = "Kink controlling for extra mass with correction")
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kink4_fe_corrected$plot

b = 1.943(0.168)
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Kink controlling for extra mass with correction

Applying the integration constraint correction without controlling for the extra bunching mass would have
instead returned:

kink4_no_fe <- bunchit(z_vector = kink4_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 6, t0= 0 , t1 = .2,

correct = TRUE, p_b=TRUE, seed = 1,

p_title = "Kink not controlling for extra mass with correction")

kink4_no_fe$plot

b = 1.673(0.246)
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Kink not controlling for extra mass with correction

In this case, the counterfactual is biased upwards because the estimator is trying to Ąt it smoothly through
the extra bunching mass, effectively pulling it up, which reduces the b estimate from 1.9426183 to 1.6728269.
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Kink example 5: Changing some parameters

Finally, letŠs explore changing some parameters. Going back to the Ąrst example, letŠs change binv to group
the data by forcing zstar to be the maximum value in its bin, and set binwidth to 100. LetŠs visualize this
before setting further parameters:

plot_hist(z_vector = bunching_data$kink, zstar = 10000, binv = "max",

binwidth = 100, bins_l = 20, bins_r = 20,

p_title = "Distribution from grouping zstar to be max in bin")$plot
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Distribution from grouping zstar to be max in bin

This version now creates some diffuse bunching by shifting some to the Ąrst bin to the right of z∗, so
bins_excl_r should be set to 1. We can also increase the Ćexibility of the polynomial by setting poly = 9.

kink5 <- bunchit(z_vector = bunching_data$kink, zstar = 10000, binv = "max",

binwidth = 100, bins_l = 20, bins_r = 20, bins_excl_r = 1,

poly = 6, t0 = 0, t1 = .2, p_b = TRUE, seed = 1,

p_title = "Kink with diffuse bunching and zstar max in bin")

kink5$plot

b = 0.931(0.21)
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Kink with diffuse bunching and zstar max in bin

Note how b has now dropped from 1.8220879 to 0.9307475, showing that the estimate can be sensitive to these
choices. Running the analysis for various values of the main input parameters should be done for robustness,
which can help uncover any irregularities in the data that should be taken into account.
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Notches

We now move on to bunching examples in a setting with notches. For this, weŠll use bunching_data$notch_vector

and consider a case of a tax notch where the average tax rate in the Ąrst bracket is t0 = 0.18, and jumps to
t1 = 0.25 as earnings cross the z∗ = 10000 threshold.

Notch example 1: Sharp bunching with hole

LetŠs visualize the simulated distribution:

plot_hist(z_vector = bunching_data$notch_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, p_title = "Notch Example")$plot
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First, we will apply the bunching estimator without enforcing the integration constraint correction, and then
see how this affects our results. We will also not force zU to a particular value (the default setting). Since the
distribution shows no diffuse bunching below z∗, bins_excl_l can be kept to the default value of 0. Note
that in settings with notches, we must explicitly set notch = TRUE. The outcome of these input choices is:

notch1 <- bunchit(z_vector = bunching_data$notch_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 5, t0=0.18, t1=.25, correct = FALSE,

notch = TRUE, p_b = TRUE, p_b_e_xpos = 9000, seed = 1,

p_title = "Notch without correction")

notch1$plot

b = 4.871(0.196)
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Notch without correction

The plot now includes two vertical lines: the red dashed vertical line is the usual marker for zU , where this
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has been estimated internally. The new blue line marks zD, the upper bound of the dominated region. The
plot shows a clear sign of missing mass in the range z ∈ (z∗, zD], since the counterfactual lies strictly above
the actual density. It also reveals optimization frictions, since optimization theory predicts an empty hole
in a frictionless world. We can get (the exact value of) zD and its bin, and an estimate of the fraction of
observations ŞstuckŤ in the hole, α, by returning the following objects:

# zD

notch1$zD

#> [1] 10934

# zD_bin

notch1$zD_bin

#> [1] 19

# alpha

notch1$alpha

#> [1] 0.7944068

zD is estimated to be 1.0934 × 104 and lies in bin 19, and the proportion of individuals who are unresponsive
due to frictions is 0.7944068. Further, we can use notch1$zU_bin to get zu, which was estimated at 29 bins
above z∗.

Notch example 2: Effect of integration constraint - shifting from z∗ Vs zU

As has been already mentioned, the integration constraint correction can be applied in two different ways.
The main difference is whether we start shifting the counterfactual upwards from the bin above z∗, or the
bin above zU . LetŠs see the results of the Ąrst case, where we set correct = TRUE and rely on the default
correct_above_zu = FALSE:

notch2 <- bunchit(z_vector = bunching_data$notch_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 4, t0=0.18, t1=.25, correct = TRUE,

notch = TRUE, p_b = TRUE, p_b_e_xpos = 9000, seed = 1,

p_title = "Notch with correction from zstar")

notch2$plot

b = 4.774(1.651)
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Notch with correction from zstar

Now letŠs see what happens if we instead set correct_above_zu = TRUE:

notch3 <- bunchit(z_vector = bunching_data$notch_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 5, t0=0.18, t1=.25, correct = TRUE,

notch = TRUE, correct_above_zu = TRUE, p_b = TRUE, p_b_e_xpos = 9000,

seed = 1, p_title = "Notch with correction from zU")

#> Warning in bunchit(z_vector = bunching_data$notch_vector, zstar = 10000, : estimated zD (upper bound of

#> Are you sure this is a notch?
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#> If yes, check your input choices for t0, t1, force_notch, correct and correct_above_zu.

notch3$plot

b = 4.825(7.483)
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In this case, we Ąnd that the counterfactual distribution is shifted much more. This does not affect the
estimate of b by much because the counterfactual at z∗ remains stable. It can however make the bootstrapped
estimates unstable, blowing up the standard errors. Furthermore, it can decrease α because it shifts the
counterfactual signiĄcantly upwards and increases the missing mass. This impact is expected in cases where
zU is much higher than z∗, because it approaches the limit of the bandwidth and forces the same mass to
be accounted for by fewer bins, shifting the counterfactual to the right of zU to much higher levels than
otherwise, which also pulls it up for bins between z∗ and zU . In this case, it may be better to consider shifting
up from z∗ (the default), or forcing zU to some value based on visual inspection.

Finally, note that the last run returns a warning:

estimated zD (upper bound of dominated region) is larger than estimated marginal buncherŠs counterfactual z
level

Are you sure this is a notch?

If yes, check your input choices for t0, t1, and force_notch.

This is telling us that with this last type of correction, the results imply that zD > z∗ + ∆z∗, which cannot
be true. The user should take the warnings (and their suggestions) seriously.

Further optional parameter inputs in bunchit() related to plot’s appearance

All parameters associated with the plot are preĄxed with p_:

• p_title: Title displayed in the plot. Default is empty
• p_xtitle: x-axis title. Default is the name of the analyzed vector
• p_ytitle: y-axis title. Default is "Count"

• p_title_size: Size of plot title. Default is 9

• p_axis_title_size: Size of x- and y-axis titles. Default is 9

• p_axis_val_size: Size of x- and y-axis value labels. Default is 7.5

• p_miny: Minimum value of y-axis. Default is 0

• p_maxy: Maximum value of y-axis. Default is set internally
• p_ybreaks: y-axis value(s) at which to add horizontal line markers. Default is optimized internally
• p_freq_color: Color of the frequency line. Default is "black"

• p_cf_color: Color of the counterfactual line. Default is "maroon"

• p_zstar_color: Color of the vertical line marking z∗. Default is "red"

• p_grid_major_y_color: Color of the y-axis major-y line marker. Default is "lightgrey"
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• p_freq_size: Thickness of frequency line. Default is 0.5

• p_freq_msize: Size of frequency line markers. Default is 1

• p_cf_size: Thickness of counterfactual line. Default is 0.5

• p_zstar_size: Thickness of vertical line marking z∗. Default is 0.5

• p_b: Whether to show the normalized bunching estimate on the plot. Default is FALSE

• p_e: Whether to show the elasticity estimate on the plot. Default is FALSE

• p_b_e_xpos: x-coordinate of bunching/elasticity estimate on plot. Default is optimized internally
• p_b_e_ypos: y-coordinate of bunching/elasticity estimate on plot. Default is optimized internally
• p_b_e_size: Text size of bunching/elasticity estimate on plot. Default is 3

• p_domregion_color: Color of vertical line marking upper bound of dominated region (in notch case).
Default is "blue"

• p_domregion_ltype: Line type/style of vertical line marking upper bound of dominated region (in
notch case). Default is "longdash". Any line type compatible with geom_vline() of ggplot2 will
work (e.g. ŞdottedŤ).

LetŠs see how to use these in the following examples.

Editing plot options

We will again analyze the original kink vector, but change the plotŠs appearance in the following ways.
First, weŠll edit the x- and y-axis titles to ŞEarningsŤ and ŞBin CountŤ using p_xtitle = "Earnings" and
p_ytitle = "Bin Count". Second, weŠll drop the horizontal line markers by setting their color to white using
p_grid_major_y_color = "white". Third, weŠll increase the size of the plots and axis labels: weŠll increase
the titleŠs size by setting p_title_size = 15, the axesŠ title size with p_axis_title_size = 13 and the axesŠ
valuesŠ size with p_axis_val_size = 11. Further, weŠll change some colors: the counterfactual line to red
using p_cf_color = "red", the true densityŠs color to a navy offshoot using a Hex value: p_freq_color

= "#1A476F", and set the z∗ marker to black using p_zstar_color = "black". Next, letŠs change the
frequency lineŠs thickness using p_freq_size = .8, and increase the size of its markers with p_freq_msize

= 1.5. WeŠll also set the minimum y-axis value to 200 and the maximum to 1200 using p_miny = 200 and
p_maxy = 1200 but only label the values at 500 and 1000 using p_ybreaks = c(500,1000). Finally, weŠll
increase the size of the text showing the estimates of b using p_b_e_size = 5, and change their x- and
y-coordinates to p_b_e_xpos = 9500 and p_b_e_ypos = 1000. This is the resulting plot:

kink_p <- bunchit(z_vector = bunching_data$kink, zstar = 10000, binwidth = 50,

bins_l = 20, bins_r = 20, poly = 4, t0 = 0, t1 = .2,

p_title = "Kink analysis", p_xtitle = "Earnings", p_ytitle = "Bin Count",

p_title_size = 15, p_axis_title_size = 13, p_axis_val_size = 11,

p_grid_major_y_color = "white", p_cf_color = "red",

p_freq_color = "#1A476F", p_freq_size = .8, p_zstar_color = "black",

p_freq_msize = 1.5, p_miny = 200, p_maxy = 1200, p_ybreaks = c(500,1000),

p_b = TRUE, p_b_e_size = 5, p_b_e_xpos = 9500, p_b_e_ypos = 1000,

seed = 1)

kink_p$plot
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b = 1.822(0.616)
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The plotting options are the same for kinks and notches. The only addition is that with notches, the user can
also change the appearance (color and linetype) of the vertical line marking the upper range of the dominated
region, zD, through p_domregion_color and p_domregion_ltype. LetŠs set these to ŞblackŤ and ŞdottedŤ
respectively. Note that to remove this line completely, simply set p_domregion_color = "white". WeŠll
also change some of the other settings (p_miny, p_maxy, p_ybreaks, etc.) to better match the notch output.
The resulting plot is:

notch_p <- bunchit(z_vector = bunching_data$notch_vector, zstar = 10000, binwidth = 50,

bins_l = 40, bins_r = 40, poly = 5, t0=0.18, t1=.25, correct = FALSE,

notch = TRUE, p_title = "Notch without correction",

p_xtitle = "Earnings", p_ytitle = "Bin Count",

p_title_size = 15, p_axis_title_size = 13, p_axis_val_size = 11,

p_grid_major_y_color = "white", p_cf_color = "red",

p_freq_color = "#1A476F", p_freq_size = .8, p_zstar_color = "black",

p_freq_msize = 1.5, p_maxy = 2500, p_ybreaks = c(1000,2000),

p_b = TRUE, p_b_e_size = 5, p_b_e_xpos = 8700, p_b_e_ypos = 1500,

seed = 1, p_domregion_color = "black", p_domregion_ltype = "dotted")

notch_p$plot

b = 4.871(0.196)

1000

2000

8000 9000 10000 11000 12000

Earnings

B
in

 C
o

u
n

t

Notch without correction

Some Ąnal notes on plotting

Please note that there can be a difference in the appearance of marker and font sizes between the plot, as
viewed in RStudio, and its exported version, so you may need to experiment with a few settings to Ąnd the
one that best matches your Ąnal document.
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If you require further Ćexibility than what is provided, you can instead build the whole plot from scratch.
From the list of results returned from bunchit(), simply use cf for the estimated counterfactual, and columns
bin and freq_orig from the data dataframe for the bins and per-bin count.
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