## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( fig.width = 7, collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE ) ## ----message = TRUE----------------------------------------------------------- library(calmr) my_blocking <- data.frame( Group = c("Exp", "Control"), Phase1 = c("10A(US)", "10C(US)"), Phase2 = c("10AB(US)", "10AB(US)"), Test = c("1#A/1#B", "1#A/1#B") ) # parsing the design and showing the original and what was detected parsed <- parse_design(my_blocking) parsed ## ----error = TRUE------------------------------------------------------------- try({ # not specifying the number of AB trials. Error! phase_parser("AB/10AC") # putting the probe symbol out of order. Error! phase_parser("#10A") # considering a configural cue for elements AB trial <- phase_parser("10AB(AB)(US)") # different USs trial <- phase_parser("10A(US1)/10B(US2)") # tons of information! Phase parser is meant for internal use only. # you are better of using `parse_design()` on a design `data.frame` str(trial) }) ## ----------------------------------------------------------------------------- supported_models() ## ----------------------------------------------------------------------------- my_pars <- get_parameters(my_blocking, model = "RW1972") # Increasing the beta parameter for US presentations my_pars$betas_on["US"] <- .6 my_pars ## ----------------------------------------------------------------------------- my_experiment <- run_experiment( my_blocking, # note we do not need to pass the parsed design model = "RW1972", parameters = my_pars ) # returns a `CalmrExperiment` object class(my_experiment) # CalmrExperiment is an S4 class, so it has slots slotNames(my_experiment) # some of the experience given to group Exp on the first (and only) iteration head(my_experiment@experiences[[1]]) # the number of times we ran the model (groups x iterations) length(experiences(my_experiment)) # an experiment has results with different levels of aggregation class(my_experiment@results) slotNames(my_experiment@results) # shorthand method to access aggregated_results results(my_experiment) ## ----------------------------------------------------------------------------- # get all the plots for the experiment plots <- plot(my_experiment) names(plots) # or get a specific type of plot specific_plot <- plot(my_experiment, type = "associations") names(specific_plot) # show which plots are supported by the model we are using supported_plots("RW1972") ## ----------------------------------------------------------------------------- plot(my_experiment, type = "associations") ## ----------------------------------------------------------------------------- plot(my_experiment, type = "responses") ## ----------------------------------------------------------------------------- # some general options for ggnetwork my_graph_opts <- get_graph_opts("small") # passing the argument t to specify the trial we're interested in. # end of acquisition patch_graphs(graph(my_experiment, t = 10, options = my_graph_opts)) # end of blocking patch_graphs(graph(my_experiment, t = 20, options = my_graph_opts))