
cna: An R Package for Configurational Causal

Inference and Modeling

Michael Baumgartner

University of Bergen, Norway
Mathias Ambühl

Consult AG, Switzerland

Abstract

The R package cna provides comprehensive functionalities for causal inference and
modeling with Coincidence Analysis (CNA), which is a configurational comparative meth-
od of causal data analysis. In this vignette, we first review the theoretical and method-
ological background of CNA. Second, we introduce the data types processable by CNA,
the package’s core analytical functions with their arguments, and some auxiliary func-
tions for data simulations. Third, CNA’s output along with relevant fit parameters and
output attributes are discussed. Fourth, we provide guidance on how to interpret that
output and, in particular, on how to proceed in case of model ambiguities. Finally, some
considerations are offered on benchmarking the reliability of CNA.

Keywords: configurational comparative methods, set-theoretic methods, Coincidence Analysis,
Qualitative Comparative Analysis, INUS causation, Boolean causation.

1. Introduction

Coincidence Analysis (CNA) is a configurational comparative method of causal data analysis
that was introduced for crisp-set (i.e. binary) data in (Baumgartner 2009a; 2009b; 2015) and
generalized for multi-value and fuzzy-set data in (Baumgartner and Ambühl 2020). In recent
years, CNA has been applied in numerous studies across the social, political, and behavioral
sciences, with a particularly rapid uptick in usage in public health, covering a wide range of
topics such as colorectal cancer screening, patient safety in nursing homes, implementation of
Hepatitis C virus treatments, drug withdrawal, COVID-19 vaccination rates, or the connection
between firearm laws and homicide rates.1 In contrast to more standard methods of data
analysis, which primarily quantify effect sizes, CNA belongs to a family of methods designed
to group causal influence factors conjunctively (i.e. in complex bundles) and disjunctively (i.e.
on alternative pathways). It is firmly rooted in a so-called regularity theory of causation and
it is the only method of its kind that can recover causal structures with multiple outcomes
(effects), for example, causal chains.

Many disciplines investigate causal structures with one or both of the following features:
(i) causes are arranged in complex bundles that only become operative when all of their
components are properly co-instantiated, each of which in isolation is ineffective or leads to
different outcomes, and (ii) outcomes can be brought about along alternative causal routes

1The Zotero CNA library provides detailed references to more than 100 applications of CNA. Among other
impacts, CNA has been showcased in the flagship journal of implementation science (Whitaker et al. 2020).

https://www.zotero.org/groups/4567107/coincidence.analysis/library

2 cna: Configurational Causal Inference and Modeling

S C F

c1 1 1 1

c2 0 0 1

c3 1 0 0

c4 0 1 0

(a)

S C F

S 1.00 0.00 0.00

C 0.00 1.00 0.00

F 0.00 0.00 1.00

(b)

Table 1: Table (a) contains ideal configurational data, where each row depicts a different
configuration of the factors S, C and F. Configuration c1, for example, represents cases (units
of observation) in which all factors take the value 1, whereas in c2, S and C are 0 and F is 1,
etc. Table (b) is the corresponding correlation matrix.

such that, when one route is suppressed, the outcome may still be produced via another one.
For example, from a given set of implementation strategies available to medical facilities, some
strategies yield a desired outcome (e.g. high uptake of treatment innovation) in combination
with certain other strategies, whereas in different combinations the same strategies may have
opposite or no effects (e.g. Yakovchenko et al. 2020). Or, a variation in a phenotype only
occurs if many single-nucleotide polymorphisms interact, and various such interactions can
independently induce the same phenotype (e.g. Culverhouse et al. 2002). Different labels are
used for features (i) and (ii) in different disciplines: “interactions”, “component causation”,
“conjunctural causation”, “alternative causation”, “equifinality”, etc. For uniformity’s sake,
we will subsequently refer to (i) as conjunctivity and to (ii) as disjunctivity of causation,
reflecting the fact that causes form conjunctions and disjunctions, that is, Boolean and- and
or-connections.

Causal structures featuring conjunctivity and disjunctivity pose severe challenges for methods
of causal data analysis. As many theories of causation entail that it is necessary (though not
sufficient) for X to be a cause of Y that there be some kind of dependence (e.g. probabilistic or
counterfactual) between X and Y, standard methods—for instance, regression and Bayesian
network methods—infer that X is not a cause of Y if X and Y are not pairwise dependent
(i.e. correlated). However, structures displaying conjunctivity and disjunctivity often do not
exhibit pairwise dependencies. As a very simple illustration, consider the interplay between
a person’s skills to perform an activity, the challenges posed by that activity, and the actor’s
autotelic experience of complete involvement with the activity called flow (Csikszentmihalyi
1975). A binary model of this interplay involves the factors S, with values 0/1 representing
low/high skills, C, with 0/1 standing for low/high challenges, and F, with 0/1 representing
the absence/presence of flow. Csikszentmihalyi’s (1975, ch. 4) flow theory entails that flow
is triggered if, and only if, skills and challenges are either both high or both low, meaning
that F=1 has the two alternative causes S=1 & C=1 and S=0 & C=0. If the flow theory
is true, ideal (i.e. non-fragmented, unconfounded, noise-free) data on this structure feature
the four configurations c1 to c4 in Table 1a, and no others. As can easily be seen from
the corresponding correlation matrix in Table 1b, there are no pairwise dependencies. In
consequence, standard methods will struggle to find the flow model, even when processing
ideal data on it.

Although standard methods provide various protocols for tracing interaction effects involv-
ing two or three exogenous factors, these interaction calculations face tight computational
complexity restrictions when more exogenous factors are involved and quickly run into multi-

Michael Baumgartner, Mathias Ambühl 3

D
B

C

A

L

1

0

1

0
0

1

1

0

power
source

lamp

+

-

(a)

A B C D L

A 1.00 0.00 0.00 0.00 0.00

B 0.00 1.00 0.00 0.00 0.00

C 0.00 0.00 1.00 0.00 0.00

D 0.00 0.00 0.00 1.00 0.26

L 0.00 0.00 0.00 0.26 1.00

(b)

A B D C L

c1 0 1 1 1 1

c2 1 0 1 1 1

c3 0 0 1 1 1

c4 0 1 1 0 1

c5 1 1 0 0 1

c6 1 0 0 0 1

c7 1 1 1 1 0

c8 1 1 0 1 0

c9 0 1 0 1 0

c10 1 0 0 1 0

c11 0 0 0 1 0

c12 1 1 1 0 0

c13 1 0 1 0 0

c14 0 0 1 0 0

c15 0 1 0 0 0

c16 0 0 0 0 0

(c)

Figure/Table 2: Diagram (a) depicts a simple electrical circuit with three single-pole switches
D, B, A, one double-pole switch C, and one lamp L. Table (c) comprises ideal data on that
circuit and Table (b) the correlation matrix corresponding to that data.

collinearity issues (Brambor et al. 2006). Yet, structures with conjunctivity and disjunctivity
may be much more complex than the flow model. Consider the electrical circuit in Figure
2a. It comprises a lamp L that can be on or off and four switches A to D, each of which
can either be in position 1 or position 0. There are three alternative conjunctions of switch
positions that close the circuit and cause the lamp to be on: A=0 & B=1 & D=1 or A=1 &
C=0 & D=0 or B=0 & C=1 & D=1. As the switches are mutually independent, there are
24 = 16 logically possible configurations of switch positions. For each of these configurations
c1 to c16, Table 2c lists whether the lamp is on (L=1) or off (L=0). That table thus contains
all and only the empirically possible configurations of the five binary factors representing the
switches and the lamp. These are ideal data for the circuit in Figure 2a. Yet, even though all
of the switch positions are causes of the lamp being on in some combination or other, factors
A, B, and C are pairwise independent of L; only D is weakly correlated with L, as can be seen
from the correlation matrix in Table 2b (which results from Table 2c). Standard methods
of causal data analysis cannot infer the causal structure behind that circuit from Table 2c.
They are not designed to group causes conjunctively and disjunctively.

A switch position as A=0 can only be identified as cause of L=1 by finding the whole conjunc-
tion of switch positions in which A=0 is indispensable for closing the circuit. More generally,
discovering causal structures exhibiting conjunctivity and disjunctivity calls for a method
that tracks causation as defined by a theory not treating a dependence between individual
causes and effects as necessary for causation and that embeds values of exogenous factors in
complex Boolean and- and or-functions over many other causes, fitting those functions as a
whole to the data. But the space of Boolean functions over even a handful of factors is vast.
For n binary factors there exist 22n

Boolean functions. For the switch positions in our circuit
there exist 65536 Boolean functions; if we add only one additional binary switch that number
jumps to 4.3 billion and if we also consider factors with more than two values that number

4 cna: Configurational Causal Inference and Modeling

explodes beyond controllability. That means a method capable of correctly discovering causal
structures with conjunctivity and disjunctivity must find ways to efficiently navigate in that
vast space of possibilities. This is the purpose of CNA.

CNA takes data on binary, multi-value or fuzzy-set factors as input and infers causal structures
as defined by the so-called INUS theory from it. The INUS theory was first developed by
Mackie (1974) and later refined to the MINUS theory by Graßhoff and May (2001) (see
also Baumgartner and Falk 2023a; Beirlaen et al. 2018). It defines causation in terms of
redundancy-free Boolean dependency structures and, importantly, does not require causes
and their outcomes to be pairwise dependent. As such, it is custom-built to account for
structures featuring conjunctivity and disjunctivity.

CNA is not the only method for the discovery of (M)INUS structures. Other methods that
can be used for that purpose are Logic Regression (Ruczinski et al. 2003; Kooperberg and
Ruczinski 2005), which is implemented in the R package LogicReg (Kooperberg and Ruczinski
2023),2 and Qualitative Comparative Analysis (QCA; Ragin 2008; Rihoux and Ragin 2009;
Cronqvist and Berg-Schlosser 2009; Thiem 2018), implemented in the R packages QCApro

(Thiem 2018) and QCA (Dusa 2024).3 But CNA is the only method of its kind that can build
models with more than one outcome and, hence, can analyze common-cause and causal chain
structures as well as causal cycles and feedbacks. Moreover, unlike the models produced by
Logic Regression or Qualitative Comparative Analysis, CNA’s models are guaranteed to be
redundancy-free, which makes them directly causally interpretable in terms of the (M)INUS
theory; and CNA is more successful than any other method at exhaustively uncovering all
(M)INUS models that fit the data equally well. For detailed comparisons of CNA with
Qualitative Comparative Analysis and Logic Regression see (Baumgartner and Ambühl 2020;
Swiatczak 2021) and (Baumgartner and Falk 2023b), respectively.

The cna package reflects and implements CNA’s latest stage of development. This vignette
provides a detailed introduction to cna. We first exhibit cna’s theoretical and methodological
background. Second, we discuss the main inputs of the package’s core function cna() along
with numerous auxiliary functions for data review and simulation. Third, the working of the
algorithm implemented in cna() is presented. Fourth, we explain cna()’s output along with
relevant fit parameters and output attributes. Fifth, we provide some guidance on how to
interpret that output and, in particular, on how to proceed in case of model ambiguities.
Finally, some considerations are offered on benchmarking the reliability of cna().

2. Background

The (M)INUS theory of causation belongs to the family of so-called regularity theories, which
have roots as far back as Hume (1999 (1748)). It is a type-level theory of causation (cf.
Baumgartner 2020) that analyzes the dependence relation of causal relevance between fac-
tors/variables taking on specific values, as in “X=χ is causally relevant to Y=γ”. It assumes
that causation is ultimately a deterministic form of dependence, such that whenever the same
complete cause occurs the same effect follows. This entails that indeterministic behavior
patterns in data result from insufficient control over background influences generating noise

2Another package implementing a variation of Logic Regression is logicFS (Schwender and Tietz 2024).
3Other useful QCA software include QCAfalsePositive (Braumoeller 2015) and SetMethods (Oana et al.

2025).

https://cran.r-project.org/package=LogicReg
https://cran.r-project.org/package=QCApro
https://cran.r-project.org/package=QCA
https://cran.r-project.org/package=logicFS
https://cran.r-project.org/package=QCAfalsePositive
https://cran.r-project.org/package=SetMethods

Michael Baumgartner, Mathias Ambühl 5

and not from the indeterministic nature of the underlying causal processes. For X=χ to be
a (M)INUS cause of Y=γ, X=χ must be a difference-maker of Y=γ, meaning—roughly—that
there exists a context in which other causes take constant values and a change from X6=χ to
X=χ is associated with a change from Y 6=γ to Y=γ.

To further clarify that theory as well as the characteristics and requirements of inferring
(M)INUS structures from empirical data a number of preliminaries are needed.

2.1. Factors and their values

Factors are the basic modeling devices of CNA. They are analogous to (random) variables
in statistics, that is, they are functions from (measured) properties into a range of values.
They can be used to represent categorical properties that partition sets of units of observation
(cases) either into two sets, in case of binary properties, or into more than two (but finitely
many) sets, in case of multi-value properties, such that the resulting sets are exhaustive and
pairwise disjoint. Factors representing binary properties can be crisp-set (cs) or fuzzy-set
(fs); the former can take on 0 and 1 as possible values, whereas the latter can take on any
(continuous) values from the unit interval [0, 1]. Factors representing multi-value properties
are called multi-value (mv) factors; they can take on any of an open (but finite) number of
non-negative integers.

Values of a cs or fs factor X can be interpreted as membership scores in the set of cases
exhibiting the property represented by X. A case of type X=1 is a full member of that set,
a case of type X=0 is a (full) non-member, and a case of type X=χi, 0 < χi < 1, is a
member to degree χi. A case is considered a member of X if its membership score χi reaches
the 0.5-anchor, that is, χi ≥ 0.5, and it is a non-member of X if χi < 0.5. An alternative
interpretation, which lends itself particularly well for causal modeling, is that “X=1” stands
for the full presence of the property represented by X, “X=0” for its full absence, and “X=χi”
for its partial presence (to degree χi). By contrast, the values of an mv factor X designate
the particular way in which the property represented by X is exemplified. For instance, if
X represents the education of subjects, X=2 may stand for “high school”, with X=1 (“no
completed primary schooling”) and X=3 (“university”) designating other possible property
exemplifications. Mv factors taking on one of their possible values also define sets, but the
values themselves must not be interpreted as membership scores; rather they denote the
relevant property exemplification.

As the explicit “Factor=value” notation yields convoluted syntactic expressions with increas-
ing model complexity, the cna package uses the following shorthand notation, which is stan-
dard in Boolean algebra (Bowran 1965): membership in a set is expressed by italicized upper
case and non-membership by italicized lower case letters. “X” signifies membership in the set
of cases exhibiting the property represented by X and “x” signifies non-membership in that
set. Italicization thus carries meaning: “X” designates the factor and “X” membership in the
set of cases with values of X above 0.5. In case of mv factors, value assignments to factors
are not abbreviated but always written out, using the “Factor=value” notation.

2.2. Boolean operations

The (M)INUS theory defines causation using the Boolean operations of negation (¬X, or x),

6 cna: Configurational Causal Inference and Modeling

Inputs Outputs

X Y ¬X X∗Y X + Y X → Y X ↔ Y

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Table 2: Classical Boolean operations applied to cs factors.

conjunction (X∗Y), disjunction (X + Y), implication (X → Y), and equivalence (X ↔ Y).4

Negation is a unary truth function, the other operations are binary truth functions. That is,
they take one resp. two truth values as inputs and output a truth value. When applied to cs
factors, both their input and output set is {0, 1}. Negation is translated by “not”, conjunction
by “and”, disjunction by “or”, implication by “if . . . then”, and equivalence by “if and only if
(iff)”. Their classical definitions are given in Table 2.

These operations can be straightforwardly applied to mv factors as well, in which case they
amount to functions from the mv factors’ domain of values into the set {0, 1}. To illustrate,
let both X and Y be ternary factors with values from the domain {0, 1, 2}. The negation of
X=2, viz. ¬(X=2), then returns 1 iff X is not 2, meaning iff X is 0 or 1. X=2∗Y=0 yields 1 iff
X is 2 and Y is 0. X=2 + Y=0 returns 1 iff X is 2 or Y is 0. X=2 → Y=0 yields 1 iff X is not
2 or Y is 0. X=2 ↔ Y=0 issues 1 iff either X is 2 and Y is 0 or X is not 2 and Y is not 0.

For fs factors, the classical Boolean operations must be translated into fuzzy logic. There
exist numerous systems of fuzzy logic (for an overview cf. Hájek 1998), many of which come
with their own renderings of Boolean operations. In the context of CNA (and QCA), the
following fuzzy-logic rendering is standard: negation ¬X is 1 − X, conjunction X∗Y is the
minimum membership score in X and Y , i.e., min(X, Y), disjunction X + Y is the maximum
membership score in X and Y , i.e., max(X, Y), an implication X → Y is taken to express
that the membership score in X is smaller or equal to Y (X ≤ Y), and an equivalence X ↔ Y
that the membership scores in X and Y are equal (X = Y).

Based on the implication operator, the notions of sufficiency and necessity are defined, which
are the two Boolean dependencies exploited by the (M)INUS theory:

Sufficiency X is sufficient for Y iff X → Y (or equivalently: x + Y ; and colloquially: “if X
is present, then Y is present”);

Necessity X is necessary for Y iff Y → X (or equivalently: x → y or y+X; and colloquially:
“if Y is present, then X is present”).

Analogously for more complex expressions:

• X=3 ∗Z=2 is sufficient for Y=4 iff X=3∗Z=2 → Y=4;

• X=3 + Z=2 is necessary for Y=4 iff Y=4 → X=3 + Z=2;

• X=3 + Z=2 is sufficient and necessary for Y=4 iff X=3 + Z=2 ↔ Y=4.

4Note that “∗” and “+” are used as in Boolean algebra here, which means, in particular, that they do
not represent the linear algebraic (arithmetic) operations of multiplication and addition (notational variants
of Boolean “∗” and “+” are “∧” and “∨”). For a standard introduction to Boolean algebra see (Bowran 1965).

Michael Baumgartner, Mathias Ambühl 7

2.3. (M)INUS causation

Boolean dependencies of sufficiency and necessity amount to mere patterns of co-occurrence
of factor values; as such, they carry no causal connotations whatsoever. In fact, most Boolean
dependencies do not reflect causal dependencies. To just mention two well-rehearsed examples:
the sinking of a properly functioning barometer in combination with high temperatures and
blue skies is sufficient for weather changes, but it does not cause the weather; or whenever it
rains, the street gets wet, hence, wetness of the street is necessary for rainfall but certainly
not causally relevant for it. At the same time, some dependencies of sufficiency and necessity
are in fact due to underlying causal dependencies: rainfall is sufficient for wet streets and also
a cause thereof, or the presence of oxygen is necessary for fires and also a cause thereof.

That means the crucial problem to be solved by the (M)INUS theory is to filter out those
Boolean dependencies that are due to underlying causal dependencies and are, hence, amenable
to a causal interpretation. The main reason why most sufficiency and necessity relations do
not reflect causation is that they either contain redundancies or are themselves redundant
to account for the behavior of the outcome, whereas causal conditions do not feature re-
dundant elements and are themselves indispensable to account for the outcome in at least
one context. Accordingly, to filter out the causally interpretable Boolean dependencies, they
need to be freed of redundancies. In Mackie’s (1974, 62) words, causes are I nsufficient but
Non-redundant parts of Unnecessary but Sufficient conditions (thus the acronym INUS).

While Mackie’s INUS theory only requires that sufficient conditions be freed of redundancies,
he himself formulates a problem for that theory, viz. the Manchester Factory Hooters problem
(Mackie 1974, 81-87), which Graßhoff and May (2001) solve by eliminating redundancies
also from necessary conditions. Accordingly, modern versions of the INUS theory stipulate
that whatever can be removed from sufficient or necessary conditions without affecting their
sufficiency and necessity is not a difference-maker and, hence, not a cause. The causally
interesting sufficient and necessary conditions are minimal in the following sense:

Minimal sufficiency A conjunction Φ of coincidently instantiated factor values (e.g., X1
∗ . . .

∗Xn) is a minimally sufficient condition of Y iff Φ → Y and there does not exist a proper
part Φ′ of Φ such that Φ′ → Y , where a proper part Φ′ of Φ is the result of eliminating
one or more conjuncts from Φ.

Minimal necessity A disjunction Ψ of minimally sufficient conditions (e.g., Φ1 + . . . + Φn)
is a minimally necessary condition of Y iff Y → Ψ and there does not exist a proper
part Ψ′ of Ψ such that Y → Ψ′, where a proper part Ψ′ of Ψ is the result of eliminating
one or more disjuncts from Ψ.

Minimally sufficient and minimally necessary conditions can be combined to so-called atomic
MINUS-formulas (Beirlaen et al. 2018; or, equivalently, minimal theories, Graßhoff and May
2001):

Atomic MINUS-formula An atomic MINUS-formula of an outcome Y is an expression
Ψ ↔ Y , where Ψ is a minimally necessary disjunction of minimally sufficient conditions
of Y , in disjunctive normal form (DNF).5

5An expression is in DNF iff it is a disjunction of one or more conjunctions of one or more literals (i.e.
factor values; Lemmon 1965, 190; or Bowran 1965, 13).

8 cna: Configurational Causal Inference and Modeling

Atomic MINUS-formulas can represent structures with one outcome only. To represent struc-
tures with more than one outcome, atomic MINUS-formulas are conjunctively combined to
complex MINUS-formulas. But conjunctive concatenation can introduce new redundancies.
It is possible that a conjunction of, say, three atomic MINUS-formulas m1

∗m2
∗m3 is logically

equivalent to a conjunction of only two of them, for instance, m1
∗m2 (see Baumgartner and

Falk 2023a for a concrete example). In that case, m3 makes no difference to the behavior
of the factors in the structure, meaning it is redundant. Baumgartner and Falk (2023a) call
this a structural redundancy. Consequently, the definition of a complex MINUS-formula must
include an additional non-redundancy constraint:

Complex MINUS-formula A complex MINUS-formula of outcomes Y1, . . . , Yn is a con-
junction (Ψ1 ↔ Y1)∗ . . . ∗(Ψn ↔ Yn) of atomic MINUS-formulas that is itself free of
structural redundancies.

Both atomic and complex MINUS-formulas are referred to as MINUS-formulas, for short.
They serve as a bridge between Boolean dependencies and causal dependencies: only those
Boolean dependencies are causally interpretable that appear in MINUS-formulas. To make
this concrete, consider the following atomic exemplar:

A∗e + C∗d ↔ B (1)

(1) being a MINUS-formula of B entails that A∗e and C∗d, but neither A, e, C, nor d alone,
are sufficient for B and that A∗e + C∗d, but neither A∗e nor C∗d alone, are necessary for B. If
this holds, it follows that for each (appearance of a) factor value in (1) there exists a difference-
making pair, meaning a pair of configurations such that a change in that factor value alone
accounts for a change in the outcome (Baumgartner and Falk 2023a). For example, A being
part of the MINUS-formula (1) entails that there are two configurations σi and σj such that
e is given and C∗d is not given in both σi and σj , while σi features A and B and σj features
a and b. Only if such a difference-making pair 〈σi, σj〉 exists is A indispensable to account for
B. Analogously, (1) being a MINUS-formula entails that there exist difference-making pairs
for all other (appearances of) factor values in (1).

To define causation in terms of Boolean difference-making, an additional condition is needed
because not all MINUS-formulas faithfully represent causation. Complete redundancy elim-
ination is relative to the set of analyzed factors F, meaning that factor values contained in
a MINUS-formula relative to some F may fail to be part of a MINUS-formula relative to
supersets of F (Baumgartner 2013). In other words, by adding further factors to the analysis,
factor values that originally appeared to be non-redundant to account for an outcome can
turn out to be redundant after all. Hence, a permanence condition needs to be imposed:
only factor values that are permanently non-redundant, meaning that cannot be rendered
redundant by expanding factor sets, are causally relevant.

These considerations yield the following definition of causation:

Causal Relevance (MINUS) X is causally relevant to Y if, and only if, (I) X is part
of a MINUS-formula of Y relative to some factor set F and (II) X remains part of a
MINUS-formula of Y across all expansions of F.

Two features of the (MINUS) definition make it particularly well suited for the analysis of
structures affected by conjunctivity and disjunctivity. First, (MINUS) does not require that

Michael Baumgartner, Mathias Ambühl 9

causes and effects are pairwise dependent. The following is a well-formed MINUS-formula
expressing the flow model from the introduction: S∗C + s∗c ↔ F . As shown in Table
1, ideal data generated from that model feature no pairwise dependencies. Nonetheless, if,
say, high skills are permanently non-redundant to account for flow in combination with high
challenges, they are causally relevant for flow subject to (MINUS), despite being uncorrelated
with flow. Second, MINUS-formulas whose elements satisfy the permanence constraint not
only identify causally relevant factor values but also place a Boolean ordering over these
causes, such that conjunctivity and disjunctivity can be directly read off their syntax. Take
the following complex MINUS-formula:

(A∗b + a∗B ↔ C) ∗ (C∗f + D ↔ E) (2)

Causally interpreting (2) against the background of (MINUS) entails these causal ascriptions:

1. the factor values listed on the left-hand sides of “↔” are causally relevant for the factor
values on the right-hand sides;

2. A and b are jointly relevant to C and located on a causal path that differs from the
path on which the jointly relevant a and B are located; C and f are jointly relevant to
E and located on a path that differs from D’s path;

3. there is a causal chain from A∗b and a∗B via C to E.

2.4. Inferring MINUS causation from data

Inferring MINUS causation from data faces various challenges. First, as anticipated in sec-
tion 1, causal structures for which conjunctivity and disjunctivity hold cannot be uncovered
by scanning data for dependencies between pairs of factor values and suitably combining
dependent pairs. Instead, discovering MINUS causation requires searching for dependen-
cies between complex Boolean functions of exogenous factors and outcomes. But the space
of Boolean functions over more than five factors is so vast that it cannot be exhaustively
scanned. Hence, algorithmic strategies are needed to purposefully narrow down the search.

Second, condition (MINUS.II) is not comprehensively testable. Once a MINUS-formula of an
outcome Y comprising a factor value X has been inferred from data δ, the question arises
whether the non-redundancy of X in accounting for Y is an artifact of δ, due, for example, to
the uncontrolled variation of confounders, or whether it is genuine and persists when further
factors are taken into consideration. But in practice, expanding the set of factors is only
feasible within narrow confines. To make up for the impossibility to test (MINUS.II), the
analyzed data δ should be collected in such a way that Boolean dependencies in δ are not
induced by an uncontrolled variation of latent causes but by the measured factors themselves.
If the dependencies in δ are not artefacts of latent causes, they cannot be neutralized by
factor set expansions, meaning they are permanent and, hence, causal. It follows that in
order for it to be guaranteed that causal inferences drawn from δ are error-free, δ must meet
very high quality standards. In particular, the uncontrolled causal background of δ must be
homogeneous (Baumgartner and Thiem 2020, 286):

Homogeneity The unmeasured causal background of data δ is homogeneous if, and only if,
latent causes not connected to the outcome(s) in δ on causal paths via the measured
exogenous factors (so-called off-path causes) take constant values (i.e. do not vary) in
the cases recorded in δ.

10 cna: Configurational Causal Inference and Modeling

However, third, real-life data often do not meet very high quality standards. Rather, they
tend to be fragmented and noisy. Data are fragmented when not all possible configurations of
the analyzed factors are observed, and they are noisy when they contain cases incompatible
with the data-generating structure. The degree of fragmentation corresponds to the ratio of
configurations of exogenous factors that are compatible with the data-generating structure
but missing from the data, due to practical limitations of data collection. Noise, in turn, is
measurable as the ratio of cases in the data that are incompatible with the data-generating
structure. Noise can be induced, for instance, by measurement error or limited control over
latent causes, i.e. confounding. In the presence of fragmentation and noise, there typically are
no strict Boolean sufficiency or necessity relations in the data. In consequence, methods of
MINUS discovery have to carefully evaluate the available evidence on sufficiency and necessity
relations; and they can only approximate strict MINUS structures by fitting their models more
or less closely to the data using suitable parameters and thresholds of model fit (De Souter
2024; De Souter and Baumgartner 2025; for details see section 3.2 below). Moreover, noise
stemming from the uncontrolled variation of latent causes gives rise to homogeneity violations,
which yield that inferences to MINUS causation are not guaranteed to be error-free. In order
to nonetheless distill causal information from noisy data, strategies for avoiding over- and
underfitting and estimating the error risk are needed (see Parkkinen and Baumgartner 2023).

Fourth, according to the MINUS theory, the inference to causal irrelevance is much more
demanding than the inference to causal relevance. Establishing that X is a MINUS cause of
Y requires demonstrating the existence of at least one context with a constant background in
which a difference in X is associated with a difference in Y , whereas establishing that X is
not a MINUS cause of Y requires demonstrating the non-existence of such a context, which
is impossible on the basis of the non-exhaustive data samples that are typically analyzed
in real-life studies. Correspondingly, the fact that, say, G does not appear in (2) does not
imply that G is causally irrelevant to C or E. The non-inclusion of G simply means that
the data from which (2) has been derived do not contain evidence for the causal relevance of
G. However, future research having access to additional data might reveal the existence of a
difference-making context for G and, hence, entail the causal relevance of G to C or E after
all.

Finally, on a related note, as a result of the common fragmentation of real-life data δ MINUS-
formulas inferred from δ cannot be expected to completely reflect the causal structure gener-
ating δ. That is, MINUS-formulas inferred from δ are inevitably going to be incomplete. They
only detail those causally relevant factor values along with those conjunctive, disjunctive, and
sequential groupings for which δ contain difference-making evidence. What difference-making
evidence is contained in δ not only depends on the cases recorded in δ but, when δ is noisy, also
on the tuning thresholds imposed to approximate strict Boolean dependency structures; rela-
tive to some such tuning settings an association between X and Y may pass as a sufficiency or
necessity relation whereas relative to another setting it will not. Hence, the inference to MI-
NUS causation is sensitive to the chosen tuning settings, to the effect that choosing different
settings is often going to be associated with changes in inferred MINUS-formulas.

Some variance (but not all) in inferred MINUS-formulas is unproblematic. Two different
MINUS-formulas mi and mj derived from δ using different tuning settings are in no disagree-
ment if mi and mj are related in terms of the submodel relation:

Submodel relation A MINUS-formula mi is a submodel of another MINUS-formula mj if,

Michael Baumgartner, Mathias Ambühl 11

and only if, the causal ascriptions entailed by mi are a subset of the causal ascriptions
entailed by mj .

If mi is a submodel of mj , mj is a supermodel of mi. All of mi’s causal ascriptions are
contained in its supermodels’ ascriptions, and mi contains the causal ascriptions of its own
submodels. The submodel relation is reflexive: every model is a submodel (and supermodel)
of itself; moreover, if mi and mj are submodels of one another, then mi and mj are identical.
Most importantly, if two MINUS-formulas related by the submodel relation are not identical,
they can be interpreted as describing the same causal structure at different levels of detail.

Before we turn to the cna package, a terminological note is required. In the literature on
configurational comparative methods it has become customary to refer to the models produced
by the methods as solution formulas. To mirror that convention, the cna package refers to
atomic MINUS-formulas inferred from data by CNA as atomic solution formulas, asf, for
short, and to complex MINUS-formulas inferred from data as complex solution formulas, csf.
For brevity, we will henceforth mainly use the shorthands asf and csf.

3. The input of CNA

The goal of CNA is to output all asf and csf within provided bounds of model complexity
that fit an input data set relative to provided tuning settings, in particular, fit thresholds.
The algorithm performing this task in the cna package is implemented in the function cna().
Its most important arguments are:

cna(x, outcome = TRUE, con = 1, cov = 1, maxstep = c(3, 4, 10),

measures = c("standard consistency", "standard coverage"),

ordering = NULL, strict = FALSE, exclude = character(0), notcols = NULL,

what = if (control$suff.only) "m" else "ac", details = FALSE,

suff.only = FALSE, acyclic.only = FALSE, cycle.type=c("factor","value"))

This section explains most of these inputs and introduces some auxiliary functions. The
arguments what, acyclic.only, and cycle.type will be discussed in section 5.

3.1. Data

Data δ processed by CNA have the form of m×k matrices, where m is the number of units of
observation (cases) and k is the number of measured factors. δ can either be of type “crisp-
set” (cs), “multi-value” (mv) or “fuzzy-set” (fs). Data that feature cs factors only are cs.
If the data contain at least one mv factor, they count as mv. Data featuring at least one
fs factor are treated as fs.6 Examples of each data type are given in Table 3. Raw data
collected in a study typically need to be suitably calibrated before they can be fed to cna().
We do not address the calibration problem here because it is the same for CNA as for QCA,
in which context it has been extensively discussed, for example, by Thiem and Duşa (2013) or
Schneider and Wagemann (2012). The R packages QCApro, QCA, and SetMethods provide
all tools necessary for data calibration.

6Note, first, that factors calibrated at crisp-set thresholds may appear with unsuitably extreme values if
the data as a whole are treated as fs due to some fs factor, and second, that mixing mv and fs factors in
one analysis is not possible.

https://cran.r-project.org/package=QCApro
https://cran.r-project.org/package=QCA
https://cran.r-project.org/package=SetMethods

12 cna: Configurational Causal Inference and Modeling

A B C D

c1 0 0 0 0
c2 0 1 0 0
c3 1 1 0 0
c4 0 0 1 0
c5 1 0 0 1
c6 1 0 1 1
c7 0 1 1 1
c8 1 1 1 1

(a) cs data

A B C D

c1 1 3 3 1
c2 2 2 1 2
c3 2 1 2 2
c4 2 2 2 2
c5 3 3 3 2
c6 2 4 3 2
c7 1 3 3 3
c8 1 4 3 3

(b) mv data

A B C D E

c1 0.37 0.30 0.16 0.06 0.25
c2 0.89 0.39 0.64 0.09 0.03
c3 0.06 0.61 0.92 0.37 0.15
c4 0.65 0.93 0.92 0.18 0.93
c5 0.08 0.08 0.12 0.86 0.91
c6 0.70 0.02 0.85 0.91 0.97
c7 0.04 0.72 0.76 0.90 0.68
c8 0.81 0.96 0.89 0.72 0.82

(c) fs data

Table 3: Data types processable by CNA.

Calibrated data are given to the cna() function via the argument x, which must be a data
frame or an object of class “configTable” as output by the configTable() function (see
section 3.1.1 below). The cna package contains a number of example data sets from pub-
lished studies, d.autonomy, d.educate, d.irrigate, d.jobsecurity, d.minaret, d.pacts,
d.pban, d.performance, d.volatile, d.women, and one simulated data set, d.highdim. For
details on their contents and sources, see the cna reference manual. After having loaded the
cna package, all of these data sets are available for processing:

R> library(cna)

R> cna(d.educate)

R> cna(d.women)

Configuration tables

To facilitate the reviewing of data, the function configTable(x, case.cutoff = 0) as-
sembles cases with identical configurations in one row of a so-called configuration table. A
configuration table is not to be confused with what is called a truth table in QCA. While
a QCA truth table indicates for every configuration of all exogenous factors (i.e. for every
minterm) whether it is sufficient for the outcome, a CNA configuration table does not express
relations of sufficiency but simply provides a compact representation of the data that lists all
configurations exactly once and adds a column indicating how many instances (cases) of each
configuration are contained in the data.

The first argument x of configTable() is a data frame or matrix. The function then merges
multiple rows of x featuring the same configuration into one row, such that each row of the
resulting table corresponds to one determinate configuration of the factors in x. The number
of occurrences of a configuration and an enumeration of the cases instantiating it are saved
as attributes “n” and “cases”, respectively.

R> configTable(d.women)

configTable of type "cs"

ES QU WS WM LP WNP | n.obs

SE 1 1 1 0 0 1 | 1

https://cran.r-project.org/web/packages/cna/cna.pdf

Michael Baumgartner, Mathias Ambühl 13

FI 1 0 1 0 0 1 | 1

IS,NO 1 1 1 1 1 1 | 2

DK 1 0 1 1 1 1 | 1

BE,NL 1 1 0 1 1 1 | 2

ES 1 1 0 1 0 1 | 1

AT 1 1 0 0 1 1 | 1

NZ 0 0 0 1 1 1 | 1

DE 0 1 0 1 1 1 | 1

CH,GR,PT 1 1 0 0 0 0 | 3

AU,FR,GB,IE 0 1 0 1 0 0 | 4

LU 1 0 0 0 1 0 | 1

CA,US 0 0 0 1 0 0 | 2

IT 0 1 0 0 0 0 | 1

Total no.of.cases: 22

The second argument case.cutoff allows for setting a minimum frequency cutoff determining
that configurations with less instances in the data are not included in the configuration table
and the ensuing analysis. For instance, configTable(x, case.cutoff = 3) entails that
configurations that are instantiated in less than 3 cases are excluded.

Configuration tables produced by configTable() can be directly passed to cna(). Moreover,
as configuration tables generated by configTable() are objects that are very particular to
the cna package, the function ct2df() is available to transform configuration tables back into
ordinary R data frames.

R> pact.ct <- configTable(d.pacts, case.cutoff = 2)

R> ct2df(pact.ct)

Data simulations

The cna package provides extensive functionalities for data simulations—which, in turn, are
essential for inverse search trials that benchmark CNA’s output (see section 7). In a nut-
shell, the functions allCombs() and full.ct() generate the space of all logically possible
configurations over a given set of factors, selectCases() selects, from this space, the con-
figurations that are compatible with a data-generating causal structure, which, in turn, can
be randomly drawn by randomAsf() and randomCsf(), makeFuzzy() fuzzifies that data, and
some() randomly selects cases, for instance, to produce data fragmentation.

More specifically, allCombs(x) takes an integer vector x as input and generates a configu-
ration table featuring all possible value configurations of length(x) factors—the first factor
having x[1] values, the second x[2] values etc. The factors are labeled using capital letters
in alphabetical order. Analogously, but more flexibly, full.ct(x) generates a configuration
table with all logically possible value configurations of the factors defined in the input x,
which can be a configuration table, a data frame, an integer, a list specifying the factors’
value ranges, or a character vector featuring all admissible factor values.

R> allCombs(c(2, 2, 2)) - 1

R> allCombs(c(3, 4, 5))

14 cna: Configurational Causal Inference and Modeling

R> full.ct("A + B*c")

R> full.ct(6)

R> full.ct(list(A = 1:2, B = 0:1, C = 1:4))

The input of selectCases(cond, x) is a character string cond specifying a Boolean function,
which typically (but not necessarily) expresses a data-generating MINUS structure, as well as,
optionally, a data frame or configuration table x. If x is specified, the function selects the cases
that are compatible with cond from x; if x is not specified, it selects from full.ct(cond).
It is possible to randomly draw cond using randomAsf(x) or randomCsf(x), which generate
random atomic and complex solution (i.e. MINUS-)formulas, respectively, from a data frame
or configuration table x.

R> dat1 <- allCombs(c(2, 2, 2)) - 1

R> selectCases("A + B <-> C", dat1)

R> selectCases("(h*F + B*C*k + T*r <-> G)*(A*b + H*I*K <-> E)")

R> target <- randomCsf(full.ct(6))

R> selectCases(target)

makeFuzzy(x, fuzzvalues = c(0, 0.05, 0.1)) simulates fuzzy-set data by transforming
a data frame or configuration table x consisting of cs factors into an fs configuration table.
To this end, the function adds values selected at random from the argument fuzzvalues to
the 0’s and subtracts them from the 1’s in x. fuzzvalues is a numeric vector of values from
the interval [0,1].

R> makeFuzzy(selectCases("Hunger + Heat <-> Run"),

+ fuzzvalues = seq(0, 0.4, 0.05))

Finally, some(x, n = 10, replace = TRUE) randomly selects n cases from a data frame or
configuration table x, with or without replacement. If x features all configurations that are
compatible with a data-generating structure and n < nrow(x), the data frame or configura-
tion table issued by some() is fragmented, meaning it does not contain all empirically possible
configurations. If n > nrow(x), data of large sample sizes can be generated featuring multiple
instances of the empirically possible configurations.

R> dat3 <- allCombs(c(3, 4, 5))

R> dat4 <- selectCases("A=1*B=3 + A=3 <-> C=2", configTable(dat3))

R> some(dat4, n = 10, replace = FALSE)

R> some(dat4, n = 1000, replace = TRUE)

3.2. Evaluating sufficiency and necessity

As we have seen in section 2.4, real-life data tend to be affected by fragmentation and noise,
in the presence of which strictly sufficient or necessary conditions for an outcome often do not
exist. Accordingly, methods for MINUS discovery have to carefully evaluate what inferences
on sufficiency and necessity relations the available evidence warrants. In particular, it must
be assessed whether the nonexistence of strictly sufficient or necessary conditions is more
likely due to deficiencies in data collection and lack of control over background influences, or

Michael Baumgartner, Mathias Ambühl 15

whether it is indicative of the absence of causal relations. The former holds if, and only if,
strict sufficiency and necessity would have been observed had the data been ideal, that is,
non-fragmented and noise-free. Various measures are available to help evaluate whether that
hypothetical holds or not. As the implication operator underlying the notions of sufficiency
and necessity is defined differently in classical and fuzzy logic, the evaluation measures for cs
and mv data have different formal definitions than the measures for fs data. But since they
are very closely related conceptually, the measures have identical names in the cs/mv and fs
contexts. Their names reflect the fact that they have all evolved from consistency and cover-
age, which Ragin (2006) imported into the QCA protocol and which have proven serviceable
to the purposes of CNA as well. This section first presents the variants of consistency and
coverage suitable for cs and mv data, then turns to the fs case, and finally discusses the
choice of evaluation measures and the setting of corresponding thresholds.

Crisp-set and multi-value data

To introduce the relevant evaluation measures for cs and mv data, we use Φ as a placeholder
for a Boolean expression in DNF (see fn. 5), for example, A, A∗C, or A=2∗C=3 + A=1∗C=1,
while φ represents the negation of that DNF. Analogously, Y and y shall be placeholders for
single factor values and their negations, for example, A and a. We call Φ the antecedent whose
sufficiency or necessity for the outcome Y is to be assessed. Moreover, we use cardinality bars
| . . . | to refer to the number of cases in the analyzed data δ satisfying the enclosed expression.
For example, |Φ∗Y | designates the number of cases in δ instantiating Φ∗Y (i.e. both the
antecedent and the outcome).

In versions of cna < 4.0, the only implemented sufficiency measure was consistency, which
we give in two equivalent forms here—the first being the most commonly used form and the
second being the form that renders the measure’s penalty term (|Φ∗y|) explicit.7

consistency(Φ, Y) =
|Φ∗Y |

|Φ|
=

|Φ∗Y |

|Φ∗Y | + |Φ∗y|

Consistency is formally equivalent to what is known as positive predictive value or precision
in various fields of machine learning. It considers all cases in δ featuring Φ and measures the
proportion of them that satisfy Φ → Y , which are those that instantiate Y in addition to Φ.
It penalizes the cases with Φ that violate Φ → Y , that is, cases with Φ∗y.

Even though this penalization schema makes good intuitive sense, consistency has two dis-
tinctive weaknesses (see De Souter 2024). First, as cases exhibiting Y cannot violate Φ → Y ,
consistency tends to be high in data δ with a high proportion of cases with Y , meaning with
high outcome prevalence. Even if Φ and Y are entirely independent in δ, the consistency of
Φ for Y is equal to the prevalence of Y (De Souter and Baumgartner 2025). In other words,
when the prevalence of Y is high, consistency is high for every (arbitrary) Φ. But of course,
the mere fact that most cases in δ instantiate Y is not evidence in favor of every Φ being
sufficient for Y in the (hypothetical) ideal version of δ. Second, if cases with Y are rare, there
are only few cases that could possibly corroborate that Φ → Y holds (i.e. the few cases with
Y), and if some of them are affected by noise, consistency plummets. In consequence, the
chances that consistency can detect sufficiency satisfaction are low. Overall, consistency is
too lenient when prevalence is high and it is overly strict when prevalence is low.

7The evaluation measures discussed in this section contain arithmetic sums. We symbolize sums with
script-style “+”, as opposed to the “+” used for Boolean disjunction.

16 cna: Configurational Causal Inference and Modeling

To address these weaknesses, cna 4.0 makes three new sufficiency measures available: preva-
lence-adjusted consistency (PA-consistency), contrapositive consistency (C-consistency), and
antecedent-adjusted C-consistency (AAC-consistency).

PA-consistency(Φ, Y) =
|Φ∗Y |

|Φ∗Y | +
|Y |
|y| · |Φ∗y|

C-consistency(Φ, Y) =
|φ∗y|

|φ∗y| + |Φ∗y|

AAC-consistency(Φ, Y) =
|φ∗y|

|φ∗y| +
|φ|
|Φ| · |Φ∗y|

PA-consistency is a variant of consistency that is equivalent to calibrated precision as proposed
by Siblini et al. (2020). It differs from consistency by the weight |Y |

|y| attached to the penalty

term |Φ∗y| in the denominator. When |Y | = |y|, this weight is 1, to the effect that PA-
consistency and consistency are equal. However, the weight increases as |Y | increases relative
to |y| and it decreases as |Y | decreases relative to |y|. As a result, |Φ∗y| is penalized more
strongly when prevalence is high and less strongly when prevalence is low.

C-consistency is equivalent to the measure of specificity used in machine learning. Its use as
sufficiency measure in CNA is based on the rule of contraposition, which states that Φ → Y
is logically equivalent to y → φ. In order for Φ to be sufficient for Y , the cases with y
must exhibit φ. Accordingly, C-consistency penalizes the cases with y exhibiting Φ, which
are the same cases penalized by consistency and exactly the cases violating Φ → Y and
y → φ. De Souter (2024) has shown that a combined use of consistency and C-consistency
can increase model quality substantively. Still, even though C-consistency does not suffer
from the weaknesses of consistency, it has its own limitations. It is too lenient when Φ is
infrequent in δ, and it is overly strict when Φ is frequent (see De Souter and Baumgartner
2025 for details).

AAC-consistency addresses the limitations of C-consistency by adjusting the penalty term
|Φ∗y| in the denominator of C-consistency by the weight |φ|

|Φ| . If |φ| = |Φ|, this weight is 1,

rendering AAC-consistency and C-consistency equal. However, the weight increases as |φ|
increases relative to |Φ| and it decreases as |φ| decreases relative to |Φ|, yielding that |Φ∗y| is
penalized more strongly when Φ is infrequent and less strongly when Φ is frequent.

The only necessity measure implemented in versions of cna < 4.0 was coverage, which, for
reasons of transparency, we also write in two equivalent forms here.

coverage(Φ, Y) =
|Φ∗Y |

|Y |
=

|Φ∗Y |

|Φ∗Y | + |φ∗Y |

Coverage is equivalent to what is labelled sensitivity or recall in machine learning. It considers
all cases in δ featuring Y and measures the proportion of them that comply with the necessity
of Φ for Y (i.e. Y → Φ), which are those that instantiate both Φ and Y , and it penalizes the
cases exhibiting Y without Φ, that is, the cases with φ∗Y .

Despite following a sensible penalization scheme for necessity relations, coverage has weak-
nesses analogous to those of consistency (De Souter 2024). On the one hand, it tends to be
high in data δ with a high proportion of cases featuring the antecedent Φ. Any (arbitrary) Φ

Michael Baumgartner, Mathias Ambühl 17

that is independent of Y scores high on coverage, as long as it is given in a high proportion
of cases in δ (De Souter and Baumgartner 2025). Plainly, though, that most cases instantiate
Φ is not evidence in favor of Φ being necessary for Y in the (hypothetical) ideal version of
δ. On the other hand, coverage is greatly susceptible to noise when the proportion of cases
with the antecedent is low. As it penalizes cases with φ∗Y in proportion to cases with Φ∗Y ,
only a few noisy cases with φ∗Y pull down coverage significantly, irrespective of whether Φ is
actually a cause of Y . So, coverage is too lenient when the proportion of Φ is high and too
strict when that proportion is low.

Version 4.0 of cna provides three new necessity measures: antecedent-adjusted coverage (AA-
coverage), contrapositive coverage (C-coverage), and prevalence-adjusted C-coverage (PAC-
coverage).

AA-coverage(Φ, Y) =
|Φ∗Y |

|Φ∗Y | +
|Φ|
|φ| · |φ∗Y |

C-coverage(Φ, Y) =
|φ∗y|

|φ∗y| + |φ∗Y |

PAC-coverage(Φ, Y) =
|φ∗y|

|φ∗y| +
|y|
|Y | · |φ∗Y |

As regular coverage is too lenient when the proportion of Φ is high and too strict when that
proportion is low, AA-coverage adds the weight |Φ|

|φ| to the penalty |φ∗Y |. This makes AA-
coverage stricter than coverage when the antecedent proportion is high and more lenient than
coverage when it is low, thereby mitigating the limitations of coverage.

C-coverage is equivalent to negative predictive value (NPV). Its use as necessity measure is
justified by the rule of contraposition, which guarantees that Φ is necessary for Y if, and
only if, y is necessary for φ. Both necessity relations are violated by cases with φ∗Y (and
by no others). Correspondingly, C-coverage penalizes the cases exhibiting φ∗Y by measuring
the proportion of cases with φ that instantiate y. It does not suffer from the limitations of
coverage, but it has its own weaknesses. It is too lenient when prevalence is low, and it is too
strict when prevalence is high (De Souter and Baumgartner 2025).

To alleviate these problems of C-coverage, PAC-coverage adjusts for prevalence by adding the
weight |y|

|Y | to the penalty term |φ∗Y |. This weight ensures that, when prevalence is low, cases
with φ∗Y are penalized more strongly, and less strongly when prevalence is high.

Fuzzy-set data

Contrary to the cs/mv measures, the fs measures are not defined in terms of case cardinalities
but based on sums over membership scores in the data δ—for example,

∑n
i=1 min(Φi, Yi),

which is the sum over min(Φi, Yi)
8 in all n cases of δ. For convenience, we will shorten

sums by dropping running indices, meaning that
∑n

i=1 min(Φi, Yi) becomes
∑

min(Φ, Y). To
maximize transparency with respect to penalization, we again provide two equivalent forms

8The minimum function is the fs rendering of conjunction, see p. 6 above.

18 cna: Configurational Causal Inference and Modeling

for the fs versions of the standard sufficiency and necessity measures:

consistency(Φ, Y) =

∑
min(Φ, Y)

∑
Φ

=

∑
min(Φ, Y)

∑
(min(Φ, Y) + min(Φ, y) − min(Φ, φ, Y, y))

coverage(Φ, Y) =

∑
min(Φ, Y)

∑
Y

=

∑
min(Φ, Y)

∑
(min(Φ, Y) + min(φ, Y) − min(Φ, φ, Y, y))

Subtracting min(Φ, φ, Y, y) from the penalty terms in the denominators of consistency and
coverage is needed to correct for the double-counting due to cases with non-zero membership
scores in all of Φ, φ, Y , and y (for more details see De Souter 2024, 24). Such corrections are
not necessary in cs and mv measures, as values of cs and mv factors are mutually exclusive,
meaning that min(Φ, φ, Y, y) is always 0.

The limitations of standard consistency and coverage for sufficiency and necessity evaluation
in fs data are analogous to those in cs and mv data. To address them, version 4.0 of
cna provides fs variants of PA-consistency, C-consistency, AAC-consistency, AA-coverage,
C-coverage, and PAC-coverage. The fs measures are defined as follows:

PA-consistency(Φ, Y) =

∑
min(Φ, Y)

∑
min(Φ, Y) +

∑
Y∑
y

·
∑

(min(Φ, y) − min(Φ, φ, Y, y))

C-consistency(Φ, Y) =

∑
min(φ, y)

∑
(min(φ, y) + min(Φ, y) − min(Φ, φ, Y, y))

AAC-consistency(Φ, Y) =

∑
min(φ, y)

∑
min(φ, y) +

∑
φ∑
Φ

·
∑

(min(Φ, y) − min(Φ, φ, Y, y))

AA-coverage(Φ, Y) =

∑
min(Φ, Y)

∑
min(Φ, Y) +

∑
Φ∑
φ

·
∑

(min(φ, Y) − min(Φ, φ, Y, y))

C-coverage(Φ, Y) =

∑
min(φ, y)

∑
(min(φ, y) + min(φ, Y) − min(Φ, φ, Y, y))

PAC-coverage(Φ, Y) =

∑
min(φ, y)

∑
min(φ, y) +

∑
y∑
Y

·
∑

(min(φ, Y) − min(Φ, φ, Y, y))

Choosing measures and setting thresholds

Sufficiency and necessity measures play a twofold role in CNA: on the one hand, they are key
in CNA’s model-building algorithm (see section 4), and on the other, they are used to select

Michael Baumgartner, Mathias Ambühl 19

among multiple model candidates output by that algorithm (section 6.3). When the analyzed
data are noisy and/or fragmented, strictly sufficient and necessary conditions may not exist
for scrutinized outcomes. But associations that score reasonably high on chosen sufficiency
and necessity measures may be acceptable as sufficiency or necessity relations nonetheless, on
the grounds that they would have been relations of strict sufficiency or necessity had the data
been ideal. By lowering the thresholds for associations to pass the sufficiency or necessity test
and accepting the concomitant error risk, it becomes possible to extract causal information
from data despite the presence of noise and fragmentation.

The argument measures of the cna() function selects the sufficiency and the necessity measure
to be employed for model-building. It expects a vector of length two as input, where the first
value specifies the variant of consistency to be used as sufficiency measure and the second the
variant of coverage to be used as necessity measure. The measures can be identified by their
full names or by their aliases from the following list.

R> showConCovMeasures()

standard consistency

aliases: "scon", "s-con"

standard coverage

aliases: "scov", "s-cov"

contrapositive consistency

aliases: "ccon", "c-con"

contrapositive coverage

aliases: "ccov", "c-cov"

prevalence-adjusted consistency

aliases: "PAcon", "PA-con"

antecedent-adjusted coverage

aliases: "AAcov", "AA-cov"

antecedent-adjusted contrapositive consistency

aliases: "AACcon", "AAC-con"

prevalence-adjusted contrapositive coverage

aliases: "PACcov", "PAC-cov"

The default is measures = c("standard consistency", "standard coverage"), which
can be abbreviated as measures = c("scon", "scov"). For ideal data, all combinations
of sufficiency and necessity measures yield the same output (at maximal thresholds), mean-
ing that any combination is as good as any other. However, for noisy and fragmented data,
different combinations may produce different models. These differences tend to increase with
the degree at which the value distributions of the factors in the data are imbalanced. Which
measure combinations to use for which data scenarios is a matter of ongoing research. The
results of De Souter and Baumgartner (2025) show that the measure combination producing
the most reliable models for cs data is PA-consistency for sufficiency evaluation and PAC-
coverage for necessity evaluation, that is, measures = c("PAcon", "PACcov"). Their results
also show that when the prevalence of the outcome is balanced in a mid-range (i.e. above 0.3
and below 0.7), all measure combinations perform similarly well. Unfortunately, no analogous
studies have been conducted for mv and fs data yet. Hence, for these data types, the default
measure combination measures = c("scon", "scov") is recommended at present. Still, for

20 cna: Configurational Causal Inference and Modeling

all data types and scenarios, different measure combinations can be used for cross-validation
purposes. De Souter (2024) has shown that models scoring similarly high on consistency and
C-consistency as well as on coverage and C-coverage are more likely to be correct than models
scoring high on only consistency and coverage.

The details argument can be used to obtain the scores of the returned asf and csf on any
of the available evaluation measures, irrespective of whether they are used for model-building
or not. The argument expects a character vector specifying the measures of interest, which
can be identified by their full names or by their aliases.

R> cna(d.women, measures = c("PAcon", "PACcov"), details = c("scon", "scov",

+ "ccon", "ccov", "AAcov", "AACcon"))

The function behind the details argument is also available as stand-alone function
detailMeasures(), which is explained in the cna reference manual.

Thresholds (from the interval [0, 1]) for the chosen variants of consistency and coverage can
be given to the cna() function using the arguments con and cov. The con argument sets the
consistency (or sufficiency) threshold for minimally sufficient conditions (msc), for asf and
csf, while cov sets the coverage (or necessity) threshold for asf and csf (no coverage threshold
is imposed on msc). The default numeric value for all thresholds is 1, which corresponds to
strict Boolean sufficiency and necessity. Contrary to QCA, which often returns solutions that
do not comply with the chosen consistency threshold and which does not impose a coverage
threshold at all, CNA uses the selected sufficiency and necessity measures as authoritative
model building criteria such that, if they are not met, CNA abstains from issuing solutions.
That means, if the default thresholds are used, cna() will only output strictly sufficient msc,
asf, and csf and only strictly necessary asf and csf.

If the data are noisy, the default thresholds will typically not yield any solution formulas. In
such cases, con and cov may be suitably lowered. By lowering con below 1 in a cs analysis,
cna() is given permission to treat Φ as sufficient for Y , even though there are some cases
with Φ∗y in the data. Or by lowering cov in an fs analysis, cna() is allowed to treat Φ as
necessary for Y , even though some cases have higher membership scores on Y than on Φ,
meaning that the sum of the membership scores in Y over all cases in the data exceeds the
sum of the membership scores in min(Φ, Y).

Determining the optimal values to which con and cov should be lowered in a specific discovery
context is a delicate task. On the one hand, CNA faces a severe overfitting risk when the
data contain configurations incompatible with the data-generating structure, meaning that
con and cov must not be set too high (i.e. too close to 1). On the other hand, the lower con

and cov are set, the less complex and informative CNA’s output will be, that is, the more
CNA’s purpose of uncovering causal complexity will be undermined. To find a suitable balance
between over- and underfitting, Parkkinen and Baumgartner (2023) systematically re-analyze
the data at all con and cov settings in the interval [0.7, 1], collect all solutions resulting from
such a re-analysis series in a set M, and select the solution formulas with the most sub- and
supermodels in M. These are the solutions with the highest overlap in causal ascriptions with
the other solutions in M. They are the most robust solutions inferable from the data. This
approach to robustness scoring is implemented in the function frscored_cna(x, fit.range,

granularity) of the R package frscore (Parkkinen and Baumgartner 2024).9 The function

9In addition, the R package cnaOpt (Ambühl and Baumgartner 2022) provides functions for finding the

https://cran.r-project.org/web/packages/cna/cna.pdf
https://cran.r-project.org/package=frscore
https://cran.r-project.org/package=cnaOpt

Michael Baumgartner, Mathias Ambühl 21

accepts all arguments of cna(), except for con and cov. It analyzes the data x with the
sufficiency and necessity measures selected by measures at all threshold combinations in the
interval fit.range with increments specified by granularity, and it scores the resulting
models based on their robustness.

R> library(frscore)

R> frscored_cna(d.pban, fit.range = c(1, 0.8), granularity = 0.1)

If the analyst does not want to conduct a whole robustness analysis, reasonable non-perfect
threshold settings are con = cov = 0.8 or 0.75. To illustrate, cna() does not build solutions
for the fs data named d.jobsecurity at the following con and cov thresholds (the argument
outcome is explained in section 3.3 below):

R> cna(d.jobsecurity, outcome = "JSR", con = 1, cov = 1)

R> cna(d.jobsecurity, outcome = "JSR", con = .9, cov = .9)

But if con and cov are set to 0.75, 20 solutions are returned with the default measures and
17 solutions with measures = c("PAcon", "PACcov")—the latter set of solutions being a
subset of the former:

R> cna(d.jobsecurity, outcome = "JSR", con = .75, cov = .75)

R> cna(d.jobsecurity, outcome = "JSR", con = .75, cov = .75,

+ measures = c("PAcon", "PACcov"))

In the presence of noise, it is generally advisable to vary the con and cov settings to some
degree to assess how sensitive the model space is to changes in tuning parameters and to
evaluate the overlap in causal ascriptions across different solutions. Less complex solutions are
generally preferable over more complex ones, and solutions with more overlap are preferable
over solutions with less overlap. If the sufficiency and necessity scores of resulting solutions can
be increased by raising the con and cov settings without, at the same time, disproportionately
increasing the solutions’ complexity, solutions with higher fit are preferable over solutions with
lower fit. But if an increase in fit comes with a substantive increase in model complexity, less
complex models with lower fit are to be preferred (to avoid overfitting).

3.3. Outcome, ordering, and exclude

In principle, the cna() function does not need to be told which factors in the data x have
values that are endogenous (i.e. are outcomes). It attempts to infer that from x. However,
in ordinary research contexts, analysts do not start from scratch. They often possess some
prior theoretical or causal knowledge about an investigated structure that allows them to, for
example, identify potential outcomes or to exclude certain causal relationships. The cna()

function provides three arguments—outcome, ordering, and exclude—through which prior
causal information can be supplied to efficiently constrain the search space. This section
introduces these arguments and their interplay.

Prior knowledge about which factors have values that can figure as outcomes can be given to
cna() via the argument outcome, which takes as input a character vector specifying one or

maximal consistency and coverage scores obtainable from a given data set and for identifying models reaching
those scores. For a discussion of possible applications of maximal scores see (Baumgartner and Ambühl 2021).

22 cna: Configurational Causal Inference and Modeling

several factor values that are to be considered as potential outcome(s). For cs and fs data,
factor values are expressed by upper and lower cases (e.g. outcome = c("A", "b")), for mv
data, they are expressed by the “Factor=value” notation (e.g. outcome = c("A=1","B=3")).
The default is outcome = TRUE, which means that values of all factor in x are potential out-
comes. For example, the following function call determines that of all 9 factors in d.volatile,
only V O2, i.e. VO2 taking the value 1, is a potential outcome, meaning that cna() does not
attempt to model values of any other factors as outcomes:

R> cna(d.volatile, outcome = "VO2")

When the data x contain multiple potential outcomes, it may moreover be known that these
outcomes are causally ordered in a certain way, to the effect that some of them are causally
upstream of the others. Such information can be given to CNA via a causal ordering, which
is a relation A ≺ C (defined on the factors in x) entailing that values of C cannot cause
values of A (e.g. because instances of A occur temporally before instances of C). That is, an
ordering excludes certain causal dependencies but does not stipulate any. The corresponding
argument, ordering, takes as value a character string. For example, ordering = "A, B <

C" determines that factor C is causally located after A and B, meaning that values of C are not
potential causes of values of A and B. The latter are located on the same level of the ordering,
for A and B are unrelated by ≺, whereas C is located on a level that is downstream of the
A, B-level. If an ordering is provided, cna() only searches for MINUS-formulas in accordance
with the ordering. An ordering does not need to explicitly mention all factors in x. If only
a subset of the factors are assigned to ordering, the non-included factors are entailed to be
upstream of the included ones. Hence, ordering = "C" means that C is located downstream
of all other factors in x.

To further specify the causal ordering, the logical argument strict is available. It determines
whether the elements of one level in an ordering can be causally related or not. For example,
if ordering = "A, B < C" and strict = TRUE, then values of A and B are excluded to be
causally related and cna() skips corresponding tests. By contrast, if ordering = "A, B <

C" and strict = FALSE, then cna() also searches for dependencies among values of A and
B.

Let us illustrate this with the data d.autonomy. Relative to the following function call, which
stipulates that values of AU cannot cause values of EM, SP, and CO and that the latter
factors are not mutually causally related, cna() infers that SP is causally relevant to AU :10

R> dat.aut.1 <- d.autonomy[15:30, c("AU","EM","SP","CO")]

R> ana.aut.1 <- cna(dat.aut.1, ordering = "EM, SP, CO < AU", strict = TRUE,

+ con = .9, cov = .9)

R> printCols <- c("condition", "con", "cov")

R> csf(ana.aut.1)[printCols]

condition con cov

1 SP <-> AU 0.935 0.915

Measures:

con: standard consistency

cov: standard coverage

10The function csf() used in the following code builds the csf from a cna() solution object; see section 5.1.

Michael Baumgartner, Mathias Ambühl 23

If we set strict to FALSE and, thereby, allow for causal dependencies among values of EM,
SP, and CO, it turns out that SP not only causes AU , but, on another causal path, also
makes a difference to EM :

R> ana.aut.2 <- cna(dat.aut.1, ordering = "EM, SP, CO < AU", strict = FALSE,

+ con = .9, cov = .9)

R> csf(ana.aut.2)[printCols]

condition con cov

1 (SP <-> AU)*(SP + CO <-> EM) 0.912 0.915

Measures:

con: standard consistency

cov: standard coverage

The arguments ordering and outcome interact closely. It is often not necessary to specify
both of them. For example, ordering = "C", strict = TRUE is equivalent to outcome =

"C". Still, it is important to note that the characters assigned to ordering are interpreted
as factors, whereas the characters assigned to outcome are interpreted as factor values. This
difference may require the specification of both ordering and outcome, in particular, when
only specific values of the factors in the ordering are potential outcomes. To illustrate,
compare the following two function calls:

R> cna(d.pban, ordering = "T, PB", con = .75, cov = .75)

R> cna(d.pban, outcome = c("T=2", "PB=1"), ordering = "T, PB",

+ con = .75, cov = .75)

The first call entails that any values of the factors T and PB, in that order, are located at
the downstream end of the causal structure generating the data d.pban. It returns various
solutions for PB=1 as well as for both T=0 and T=2. The second call, by contrast, narrows
the search down to T=2 as only potential outcome value of factor T, such that no solutions
for T=0 are produced.

A causal ordering excludes all values of a factor as potential causes of an outcome. However, a
user might only wish to exclude some values as potential causes. This selective exclusion can
be specified in the exclude argument. It is assigned a vector of character strings, where factor
values to be excluded are listed to the left of the "->" sign, and the corresponding outcomes
are listed to the right. For example, exclude = "A=1,C=3 -> B=1" excludes that the value
1 of factor A and the value 3 of factor C are considered as causes of the value 1 of factor
B. It is also possible to exclude factor values as potential causes of multiple outcomes; for
instance, exclude = c("A,c -> B", "b,H -> D"). In the context of cs and fs data, upper
case letters are interpreted as 1, while lower case letters are interpreted as 0. If factor names
have multiple letters, any upper case letter is interpreted as 1, and the absence of upper case
letters as 0. For mv data, the “Factor=value” notation is required. The exclude argument
can be used either independently or in conjunction with outcome and ordering. But if
the assignments to outcome and ordering contradict those to exclude, the assignments to
exclude will be disregarded.

For example, the following call narrows down the search beyond what is specified in the
outcome and ordering arguments by excluding the causal relevance of C=2 for T=2 and of
T=1 and V=0 for PB=1:

24 cna: Configurational Causal Inference and Modeling

R> cna(d.pban, outcome = c("T=2", "PB=1"), ordering = "T, PB",

+ con = .75, cov = .75, exclude = c("C=2 -> T=2", "T=1,V=0 -> PB=1"))

Selective exclusion of certain causal relationships might also be the only type of prior knowl-
edge available to an analyst. In that case, exclude can be used as sole search space constraint.

R> cna(d.jobsecurity, con = .85, cov = .85, exclude = c("s,c -> JSR",

+ "jsr, L -> R"))

In general, cna() should be given all the causal information about the interplay of the factors
in the data that is available prior to the analysis. There often exist many MINUS-formulas
that fit the data equally well. The more prior information cna() has at its disposal, the more
specific the output will be, on average.

3.4. Maxstep

As will be exhibited in more detail in section 4, cna() builds atomic solution formulas (asf),
viz. minimally necessary disjunctions of minimally sufficient conditions (msc), from the bot-
tom up by gradually permuting and testing conjunctions and disjunctions of increasing com-
plexity for sufficiency and necessity. The combinatorial search space that this algorithm has
to scan depends on a variety of different aspects, for instance, on the number of factors in x,
on the number of values these factors can take, on the number and length of the recovered
msc, etc. As the search space may be too large to be exhaustively scanned in reasonable time,
the argument maxstep allows for setting an upper bound for the complexity of the generated
asf. maxstep takes a vector of three integers c(i, j, k) as input, entailing that the generated
asf have maximally j disjuncts with maximally i conjuncts each and a total of maximally k
factor values. The default is maxstep = c(3,4,10). The user can set it to any complexity
level if computational time and resources are not an issue.

The maxstep argument is particularly relevant for the analysis of high dimensional data and
data featuring severe model ambiguities. As an example of the first kind, consider the data
d.highdim comprising 50 crisp-set factors, V1 to V50, and 1191 cases, which were simulated
from a presupposed data-generating structure with the outcomes V 13 and V 11 (see the cna

reference manual for details). These data feature 20% noise and massive fragmentation. At the
default maxstep, the following analysis, which finds the complete data-generating structure,
takes between 15 and 20 seconds to complete; lowering maxstep to c(2,3,10) reduces that
time to less than one second, at the expense of only finding half of the data-generating
structure:

R> cna(d.highdim, outcome = c("V13", "V11"), con = .8, cov = .8)

R> cna(d.highdim, outcome = c("V13", "V11"), con = .8, cov = .8,

+ maxstep = c(2,3,10))

A telling example of extensive model ambiguities is the data set d.volatile. When only
constrained by an ordering, cna() quickly recovers 416 complex solution formulas (csf) at
the default maxstep. But those are by far not all csf that fit d.volatile equally well. When
maxstep is increased only slightly to c(4,4,10), the number of csf jumps to 2860:11

11In the standard print method of cna(), the n.init parameter in csf() is set to 1000; to get all csf, this
parameter needs to be increased. See section 5.1 for details.

https://cran.r-project.org/web/packages/cna/cna.pdf

Michael Baumgartner, Mathias Ambühl 25

R> cna(d.volatile, ordering = "VO2", maxstep = c(3,4,10))

R> vol1 <- cna(d.volatile, ordering = "VO2", maxstep = c(4,4,10))

R> csf(vol1, n.init = 3000)

If maxstep is further increased, the number of solutions explodes and the analysis soon fails to
terminate in reasonable time. When a complete analysis cannot be completed, cna() can be
told to only search for msc by setting the argument suff.only to its non-default value TRUE.
As the search for msc is the part of a CNA analysis that is least computationally demanding,
it will typically terminate quickly and, thus, shed some light on the dependencies among the
factors in x even when the construction of all models is infeasible.

R> cna(d.volatile, ordering = "VO2", maxstep = c(8,10,40), suff.only = TRUE)

If suff.only is set to TRUE, CNA can process data of higher dimensionality than at the argu-
ment’s default value. Yakovchenko et al. (2020), for example, run cna() on data comprising
73 exogenous factors with suff.only = TRUE. Based on the resulting msc, they then select
a proper subset of those factors for further processing.

While the maxstep argument is valuable for controlling the search space in case of high-
dimensional and ambiguous data, it also comes with a pitfall: it may happen that cna() fails
to find a model because of a maxstep that is too low. An example is d.jobsecurity. At the
default maxstep, cna() does not build a solution, but if maxstep is increased, two solutions
are found.

R> ana.jsc.1 <- cna(d.jobsecurity, ordering = "JSR", con = .9, cov = .85)

R> csf(ana.jsc.1)[printCols]

[1] condition con cov

<0 rows> (or 0-length row.names)

R> ana.jsc.2 <- cna(d.jobsecurity, ordering = "JSR", con = .9, cov = .85,

+ maxstep = c(3,5,12))

R> csf(ana.jsc.2)[printCols]

condition con cov

1 S*V + C*l + L*P + R*V + S*c*R <-> JSR 0.906 0.859

2 C*l + R*V + P*v + S*c*R + S*C*P <-> JSR 0.912 0.853

Measures:

con: standard consistency

cov: standard coverage

In sum, there are two possible reasons for why cna() fails to build a solution: (i) the chosen
maxstep is too low; (ii) the chosen con and/or cov values are too high, meaning the processed
data x are too noisy. Accordingly, in case of a null result, two paths should be explored (in
that order): (i) gradually increase maxstep; (ii) lower con and cov, as described in section
3.2 above.

26 cna: Configurational Causal Inference and Modeling

3.5. Negated outcomes

In classical logic, the law of Contraposition ensures that an expression of type Φ ↔ Y is
equivalent to the expression that results from negating both sides of the double arrow: ¬Φ ↔
¬Y . Applied to the context of configurational causal modeling that entails that an asf for Y
can be transformed into an asf for the negation of Y , viz. y, based on logical principles alone,
i.e. without a separate data analysis. However, that transformability only holds for asf with
perfect consistency and coverage (con = cov = 1) that are inferred from exhaustive (non-
fragmented) data (see section 5.2 for details on exhaustiveness). If an asf of an outcome Y
does not reach perfect consistency or coverage or is inferred from fragmented data, identifying
the causes of y requires a separate application of cna().

There are two ways to search for the causes of negated outcomes. The first is by simply
specifying the factor values of interest in the outcome argument. While outcome = c("A",

"B") yields MINUS-formulas for the positive outcomes A and B, outcome = c("a", "b")

induces cna() to search for models of the corresponding negated outcomes. Alternatively, the
argument notcols allows for negating the values of factors in cs and fs data (in case of mv
data, cna() automatically searches for models of all possible values of endogenous factors,
thereby rendering notcols redundant). If notcols = "all", all factors are negated, i.e. their
values i are replaced by 1 − i. If notcols is given a character vector of factors in the data,
only the values of the factors in that vector are negated. For example, notcols = c("A",

"B") determines that only A and B are negated.

When processing cs or fs data, CNA should first be used to model the positive outcomes.
If resulting asf and csf do not reach perfect consistency, coverage, and exhaustiveness scores
(and the causes of the negated outcomes are of interest), a second CNA should be run negating
the values of all factors that have been modeled as outcomes in the first CNA. To illustrate,
we revisit our analysis of d.autonomy from section 3.3, which identified AU and EM as
outcomes. The following two calls conduct analyses of the corresponding negated outcomes
that produce the same solutions.

R> ana.aut.3 <- cna(dat.aut.1, outcome = c("au", "em"), con = .88, cov = .82)

R> csf(ana.aut.3)[printCols]

condition con cov

1 (sp <-> au)*(sp*co <-> em) 0.882 0.821

Measures:

con: standard consistency

cov: standard coverage

R> ana.aut.4 <- cna(dat.aut.1, ordering = "AU", con = .88, cov = .82,

+ notcols = c("AU", "EM"))

R> csf(ana.aut.4)[printCols]

condition con cov

1 (sp <-> au)*(sp*co <-> em) 0.882 0.821

Measures:

con: standard consistency

cov: standard coverage

Michael Baumgartner, Mathias Ambühl 27

4. The CNA algorithm

This section explains the working of the algorithm implemented in the cna() function. We
first provide an informal summary and then a detailed outline in four stages. The aim of cna()

is to find all msc, asf, and csf in the input data x that meet the thresholds con and cov of
the sufficiency and necessity measures specified in measures in accordance with outcome,
ordering, exclude, and maxstep. The algorithm starts with single factor values and tests
whether they meet con; if that is not the case, it proceeds to test conjunctions of two factor
values, then to conjunctions of three, and so on. Whenever a conjunction meets con (and no
proper part of it has previously been identified to meet con), it is automatically a minimally
sufficient condition msc, and supersets of it do not need to be tested any more. Then, it
tests whether single msc meet con and cov; if not, it proceeds to disjunctions of two, then to
disjunctions of three, and so on. Whenever a disjunction meets con and cov (and no proper
part of it has previously been identified to meet con and cov), it is automatically a minimally
necessary disjunction of msc, and supersets of it do not need to be tested any more. All and
only those disjunctions of msc that meet both con and cov are then issued as asf. Finally,
recovered asf are conjunctively concatenated to csf while ensuring that concatenation does
not introduce new redundancies and that the resulting csf comply with the chosen tuning
settings.

The cna() algorithm can be more specifically broken down into four stages.

Stage 1 On the basis of outcome, ordering, and exclude, cna() first builds a set of potential
outcomes O = {Oh=ωf , . . . , Om=ωg} from the set of factors F = {O1, . . . , On} in x,12

where 1 ≤ h ≤ m ≤ n, and second assigns a set of potential cause factors COi
from

F \ {Oi} to every element Oi=ωk of O. If no outcome and ordering are provided, all
value assignments to all elements of F are treated as possible outcomes in case of mv
data, whereas in case of cs and fs data O is set to {O1=1, . . . , On=1}. If both ordering

and exclude are empty, all values of all factors in F\{Oi} are treated as possible causes
of Oi=ωk, for every Oi=ωk ∈ O.

Stage 2 cna() attempts to build a set mscOi
=ωk

of minimally sufficient conditions that meet
con for each Oi=ωk ∈ O. To this end, it first checks for each value assignment Xh=χj of
each element of COi

, such that Xh=χj has a membership score above 0.5 in at least one
case in x, whether Xh=χj → Oi=ωk meets con. If, and only if, that is the case, Xh=χj

is put into the set mscOi
=ωk

. Next, cna() checks for each conjunction of two factor
values Xm=χj ∗ Xn=χl from COi

, such that Xm=χj ∗ Xn=χl has a membership score
above 0.5 in at least one case in x and no part of Xm=χj ∗ Xn=χl is already contained
in mscOi

=ωk
, whether Xm=χj ∗ Xn=χl → Oi=ωk meets con. If, and only if, that is the

case, Xm=χj ∗ Xn=χl is put into the set mscOi
=ωk

. Next, conjunctions of three factor
values with no parts already contained in mscOi

=ωk
are tested, then conjunctions of

four factor values, etc., until either all logically possible conjunctions of the elements of
COi

have been tested or maxstep is reached. Every non-empty mscOi
=ωk

is passed on
to the third stage.

Stage 3 cna() attempts to build a set asfOi
=ωk

of atomic solution formulas for every Oi=ωk ∈
O, which has a non-empty mscOi

=ωk
, by disjunctively concatenating the elements of

12Note that if x is a data frame, cna() first transforms x into a configuration table by means of
configTable(x).

28 cna: Configurational Causal Inference and Modeling

mscOi
=ωk

to minimally necessary conditions of Oi=ωk that meet con and cov. To this
end, it first checks for each single condition Φh ∈ mscOi

=ωk
whether Φh → Oi=ωk meets

con and cov. If, and only if, that is the case, Φh is put into the set asfOi
=ωk

. Next,
cna() checks for each disjunction of two conditions Φm + Φn from mscOi

=ωk
, such that

no part of Φm + Φn is already contained in asfOi
=ωk

, whether Φm + Φn → Oi=ωk meets
con and cov. If, and only if, that is the case, Φm + Φn is put into the set asfOi

=ωk
.

Next, disjunctions of three conditions from mscOi
=ωk

with no parts already contained
in asfOi

=ωk
are tested, then disjunctions of four conditions, etc., until either all logi-

cally possible disjunctions of the elements of mscOi
=ωk

have been tested or maxstep is
reached. Every non-empty asfOi

=ωk
is passed on to the fourth stage.

Stage 4 cna() calls the function csf(), which builds a set csfO of complex solution formulas.
This is done in a stepwise manner as follows. First, all logically possible conjunctions
of exactly one element from every non-empty asfOi

=ωk
are constructed. Second, the

conjunctions resulting from step 1 are freed of structural redundancies (cf. p. 8 above;
Baumgartner and Falk 2023a), and tautologous and contradictory solutions as well as so-
lutions with constant factors are eliminated. Third, csf with so-called partial structural
redundancies, which may arise from noisy data, are eliminated (see the Appendix on p.
47 for more). Fourth, if acyclic.only = TRUE, solutions with cyclic substructures are
removed (see section 5.4). Fifth, for those solutions that were modified in the previous
steps, the sufficiency and necessity scores specified by measures are re-calculated and
solutions that no longer reach con or cov are deleted. Finally, the remaining solutions
are checked for submodel relations: if one of them is a submodel of another one, it is
deleted—the output of cna() shall be maximally informative. The remaining solutions
are then returned as csfO. If there is only one non-empty set asfOi

=ωk
, csfO is identical

to asfOi
=ωk

.

To illustrate, the following code chunk, first, simulates the data in Table 3c, p. 12, and second,
runs cna() (and csf()) on that data at con = .8 and cov = .8, with the default measures

and maxstep, and without specification of outcome, ordering, and exclude.

R> dat5 <- allCombs(c(2, 2, 2, 2, 2)) -1

R> dat6 <- selectCases("(A + B <-> C)*(A*B + D <-> E)", dat5)

R> set.seed(3)

R> tab3c <- makeFuzzy(dat6, fuzzvalues = seq(0, 0.4, 0.01))

R> cna(tab3c, con = .8, cov = .8)

Table 3c contains data of type fs, meaning that the values in the data matrix are inter-
preted as membership scores in fuzzy sets. As is customary for this data type, we use up-
percase italics for membership in a set and lowercase italics for non-membership. In the
absence of any prior causal knowledge, the set of potential outcomes is determined to be
O = {A, B, C, D, E} in stage 1, that is, the presence of each factor in Table 3c is treated as
a potential outcome. Moreover, all other factors are potential cause factors of every element
of O, hence, CA = {B, C, D, E}, CB = {A, C, D, E}, CC = {A, B, D, E}, CD = {A, B, C, E},
and CE = {A, B, C, D}.

In stage 2, cna() succeeds in building non-empty sets of minimally sufficient conditions in
compliance with con and con for all elements of O: mscA = {B∗d∗E}, mscB = {C∗d, d∗E,

Michael Baumgartner, Mathias Ambühl 29

a∗C∗D, a∗C∗E, a∗C∗e}, mscC = {A, B, d∗E}, mscD = {b∗E, a∗E, c∗E}, mscE = {D, A∗B,
A∗C}. But only the elements of mscC and mscE can be disjunctively combined to atomic
solution formulas that meet cov in stage 3: asfC = {A + B ↔ C} and asfE = {D + A∗B ↔
E, D + A∗C ↔ E}. For the other three factors in O, the cov threshold of 0.8 cannot be
satisfied. cna() therefore abstains from issuing asf for A, B and D.

Finally, in stage 4 one redundancy-free csf is built from the inventory of asf in asfC and
asfE , which constitutes cna()’s final output for Table 3c:

(A + B ↔ C) ∗ (D + A∗B ↔ E) con = 0.836; cov = 0.897 (3)

5. The output of CNA

5.1. Customizing the output

The default output of cna() first lists the provided ordering (if any), second, the pre-identified
outcomes (if any), third, the implemented sufficiency and necessity measures, fourth, the
recovered asf, and fifth, the csf. Asf and csf are ordered by complexity and the product of
their con and cov scores. For asf and csf, three attributes are standardly computed: con,
cov, and complexity. The first two correspond to a solution’s scores on the selected variants
of consistency and coverage (see section 3.2 above), and the complexity score amounts to
the number of factor value appearances on the left-hand sides of "→" or "↔" in asf and csf.

As indicated on page 20, cna() can also return the scores on the evaluation measures not used
for model building by requesting them via the argument details. A number of additional
solution attributes, all of which will be explained below, can be computed: exhaustiveness,
and faithfulness for both asf and csf, as well as coherence and cyclic for csf. These
attributes are also accessible via the details argument by giving it a character vector
that specifies the attributes to be computed: for example, details = c("faithfulness",

"exhaustiveness")—the strings can be abbreviated, e.g. "f" for "faithfulness", "e" for
"exhaustiveness", etc.

R> cna(d.educate, details = c("e", "f", "co", "cy", "PAcon", "PACcov"))

The output of cna() can be further customized through the argument what that controls
which solution items to print. It can be given a character string specifying the requested
solution items: "t" stands for the configuration table, "m" for minimally sufficient conditions
(msc), "a" for asf, "c" for csf, and "all" for all solution items.

R> cna(d.educate, what = "tm")

R> cna(d.educate, what = "mac")

R> cna(d.educate, what = "all")

As shown in section 3.4, it can happen that many asf and csf fit the data equally well. The
standard output of cna() only features 5 solution items of each type. To recover all msc and
asf the functions msc(x) and asf(x) are available, where x is a solution object of cna().

30 cna: Configurational Causal Inference and Modeling

R> vol2 <- cna(d.volatile, ordering = "VO2", con = .9, cov = .9)

R> msc(vol2)

R> asf(vol2)

R> print(asf(vol2), Inf)

While msc() and asf() simply access the complete sets of msc and asf stored in x, the csf
are not stored in x. The construction of csf in the fourth stage of the CNA algorithm is not
conducted by the cna() function itself, rather, it is outsourced to the function csf() with
these main arguments:

csf(x, n.init = 1000, cyclic.only = x$acyclic.only, details = x$details,

cycle.type = x$cycle.type, verbose = FALSE)

The argument details is the same as in cna() (see p. 20); the arguments cyclic.only and
cycle.type will be further discussed in section 5.4, n.init and verbose are explained in
the remainder of this one. It can happen that the set asfOi

=ωk
contains too many asf to

construct all csf in reasonable time. The argument n.init therefore allows for controlling
how many conjunctions of asf are initially built in the first step of csf construction (see stage
4 of the CNA algorithm); it defaults to 1000. Increasing or lowering that default results in
more or less csf being built and in longer or shorter computing times, respectively.

R> csf(vol2, n.init = 2000)

R> csf(vol2, n.init = 100)

Setting the argument verbose to its non-default value TRUE prints some information about
the csf construction process to the console, e.g. how many structural redundancies or cyclic
substructures have been eliminated along the way.

R> csf(vol2, verbose = TRUE)

5.2. Exhaustiveness and faithfulness

Exhaustiveness and faithfulness are two measures of model fit that quantify the degree of
correspondence between the configurations that are, in principle, compatible with a solu-
tion m and the configurations actually contained in the data from which m is derived. To
demonstrate those measures, let Fm symbolize the set of factors with values contained in
m. Exhaustiveness is high when all or most configurations of the factors in Fm that are
compatible with m are actually contained in the data. More specifically, it amounts to the
ratio of the number of configurations over Fm in the data that are compatible with m to the
total number of configurations over Fm that are compatible with m. To illustrate, consider
d.educate, which contains all configurations that are compatible with the two csf issued by
cna() and csf():

R> printCols <- c("condition", "con", "cov", "exhaustiveness")

R> csf(cna(d.educate, details = "exhaust"))[printCols]

condition con cov exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

Michael Baumgartner, Mathias Ambühl 31

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

Measures:

con: standard consistency

cov: standard coverage

If, say, the first configuration in d.educate (viz. U∗D∗L∗G∗E) is not observed or removed—
as in d.educate[-1,]—, cna() still builds the same solutions (with perfect consistency and
coverage). In that case, however, the resulting csf are not exhaustively represented in the
data, for one configuration that is compatible with both csf is not contained therein.

R> csf(cna(d.educate[-1,], details = "exhaust"))[printCols]

condition con cov exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 0.875

2 (U + D + G <-> E)*(U + D <-> L) 1 1 0.875

Measures:

con: standard consistency

cov: standard coverage

In a sense, faithfulness is the complement of exhaustiveness. It is high when no or only
few configurations of the factors in Fm that are incompatible with m are in the data. More
specifically, faithfulness amounts to the ratio of the number of configurations over Fm in the
data that are compatible with m to the total number of configurations over Fm in the data.
The two csf resulting from d.educate also reach perfect faithfulness:

R> printCols <- c("condition", "con", "cov", "faithfulness")

R> csf(cna(d.educate, details = "faithful"))[printCols]

condition con cov faithfulness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

Measures:

con: standard consistency

cov: standard coverage

If we add a configuration that is not compatible with these csf, say, U∗D∗l∗G∗e and lower the
consistency threshold, the same solutions along with one other result—this time, however,
with non-perfect faithfulness scores.

R> csf(cna(rbind(d.educate,c(1,1,0,1,0)), con = .8, details = "f"))[printCols]

condition con cov faithfulness

1 (L + G <-> E)*(U + D <-> L) 0.857 1 0.889

2 (U + D + G <-> E)*(E <-> L) 0.857 1 0.778

3 (U + D + G <-> E)*(U + D <-> L) 0.857 1 0.889

Measures:

con: standard consistency

cov: standard coverage

32 cna: Configurational Causal Inference and Modeling

If both exhaustiveness and faithfulness are high, the configurations over Fm in the data are all
and only the configurations of the factors in Fm that are compatible with m. Low exhaustive-
ness and/or faithfulness, by contrast, means that the data do not contain many configurations
of the factors in Fm compatible with m and/or the data contain many configurations not
compatible with m. In general, solutions with higher exhaustiveness and faithfulness scores
are preferable over solutions with lower scores.

5.3. Coherence

Coherence is a measure for model fit that is custom-built for csf. It measures the degree to
which the asf combined in a csf cohere, that is, are instantiated together in the data rather
than independently of one another. Coherence is intended to capture the following intuition.
Suppose a csf entails that A is a sufficient cause of B, which, in turn, is entailed to be a
sufficient cause of C. Corresponding data δ should be such that the A − B link of that causal
chain and the B − C link are either both instantiated or both not instantiated in the cases
recorded in δ. By contrast, a case in δ such that, say, only the A − B link is instantiated but
the B −C link is not, pulls down the coherence of that csf. The more such non-cohering cases
are contained in δ, the lower the overall coherence score of the csf.

Coherence is more specifically defined as the ratio of the number of cases satisfying all asf
contained in a csf to the number of cases satisfying at least one asf in the csf. More formally,
let a csf contain asf1, asf2, . . . , asfn, coherence then amounts to (where | . . . |δ represents the
cardinality of the set of cases in δ satisfying the corresponding expression):

| asf1
∗asf2

∗ . . . ∗asfn |δ
| asf1 + asf2 + . . . + asfn |δ

To illustrate, we add a case of type U∗d∗L∗g∗e to d.educate. When applied to the resulting
data (d.edu.exp1), cna() and csf() issue two csf.

R> d.edu.exp1 <- rbind(d.educate, c(1,0,1,0,0))

R> printCols <- c("condition", "con", "cov", "coherence")

R> csf(cna(d.edu.exp1, con = .8, details = "cohere"))[printCols]

condition con cov coherence

1 (L + G <-> E)*(U + D <-> L) 0.875 1 0.889

2 (U + D + G <-> E)*(U + D <-> L) 0.875 1 0.889

Measures:

con: standard consistency

cov: standard coverage

In the added case, none of these two csf cohere, as only one of their component asf is satisfied.

Coherence is an additional parameter of model fit that allows for selecting among multiple
solutions: the higher the coherence score of a csf, the better the overall model fit.

Michael Baumgartner, Mathias Ambühl 33

5.4. Cycles

Detecting causal cycles is one of the most challenging tasks in causal data analysis—in all
methodological traditions. One reason is that factors in a cyclic structure are so highly inter-
dependent that, even under optimal discovery conditions, the diversity of (observational) data
tends to be too limited to draw informative conclusions about the data-generating structure.
Various methods in fact are restricted to analyzing acyclic structures only (most notably,
Bayes nets methods, cf. Spirtes et al. 2000).

cna() and csf() output cyclic csf if they fit the data. The optional solution attribute
cyclic identifies those csf that contain a cyclic substructure. A causal structure has a cyclic
substructure if, and only if, it contains a directed causal path from at least one cause back to
itself. The MINUS theory spells this criterion out more explicitly as follows:

Cycle A complex MINUS-formula m has a cyclic substructure if, and only if, m contains a
sequence 〈Z1, Z2, . . . , Zn〉 such that every Zi is contained in an atomic MINUS-formula
of Zi+1 and Z1 = Zn in m.

To illustrate, consider the following analysis of the d.autonomy data.

R> printCols <- c("condition", "con", "cov", "cyclic")

R> csf(cna(d.autonomy, ordering = "AU", con = .9, cov = .94,

+ details = "cy", maxstep = c(2, 2, 8)))[printCols]

condition con cov cyclic

1 (SP*RE + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

2 (SP*co + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

3 (SP*RE + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

4 (SP*co + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

Measures:

con: standard consistency

cov: standard coverage

All csf inferred in this analysis contain the cyclic sequence 〈SP, EM, SP 〉 and, thus, represent
causal cycles. Typically, when cyclic models fit the data, the output of cna() and csf() is
very ambiguous. Therefore, if there are independent reasons to assume that the data are not
generated by a cyclic structure, both cna() and csf() have the argument acyclic.only,
which, if set to its non-default value TRUE, prevents solutions with cycles from being returned
and, thereby, reduces model ambiguities. For example, by switching acyclic.only from
FALSE to TRUE in the following analysis, the solution space is reduced from 72 to 23:

R> csf(cna(d.irrigate, con = .75, cov = .75, acyclic.only = F)) |> nrow()

[1] 72

R> csf(cna(d.irrigate, con = .75, cov = .75, acyclic.only = T)) |> nrow()

[1] 23

34 cna: Configurational Causal Inference and Modeling

The cycle.type argument—also available in both cna() and csf()—controls whether a
cyclic sequence 〈Z1, Z2, . . . , Zn〉 is composed of factors (cycle.type = "factor"), which
is the default, or factor values (cycle.type = "value"). To illustrate the difference, if
cycle.type = "factor", (4) counts as cyclic:

(A + B ↔ C) ∗ (c + D ↔ A) (4)

The factor A (with value 1) appears in an asf of C (i.e. C=1), and the factor C (with value 0)
appears in an asf of A. But if cycle.type = "value", (4) does not pass as cyclic. Although
A appears in an asf of C=1, that same value of C does not appear in an asf of A; rather,
C=0 appears in the asf of A.

The function behind the solution attribute cyclic and behind the corresponding cna() ar-
guments is also available as stand-alone function cyclic() (see the cna reference manual for
details).

5.5. Plotting the output

MINUS-formulas can be visualized as causal hypergraphs, which are related to directed acyclic
graphs (DAGs; Greenland et al. 1999; Spirtes et al. 2000), the most widely used tool for visu-
alizing causal structures. But while edges in DAGs connect exactly two nodes, indicating the
direction of causation, edges in hypergraphs can connect more than two nodes and, thereby,
represent more than just the direction of causation. Causal hypergraphs can merge nodes into
bundles and then connect these bundles to other nodes. This allows for representing conjunc-
tive and disjunctive groupings of causes and, accordingly, for capturing the causal complexity
encoded in MINUS-formulas. Furthermore, while DAGs are assumed not to contain cycles,
causal hypergraphs may include cycles to accommodate the fact that MINUS-formulas may
have cyclic substructures.

For convenience, we use the acronym CHG to refer to causal hypergraphs. A CHG is a pair
(F, E), where F is a set of nodes and E is a set of ordered pairs 〈Fi, Fj〉 of disjoint subsets of
F.13 Each of these ordered pairs 〈Fi, Fj〉 ∈ E is called a directed hyperedge. The subset Fi is
called the tail of the hyperedge, Fj is its head. The heads of hyperedges in CHGs representing
MINUS-formulas are always singleton sets, whereas their tails can contain multiple elements.14

Just as edges in DAGs, hyperedges in CHGs represent the relation of direct causal relevance.
But while nodes in DAGs represent factors or variables such as A and B, the nodes in CHGs
represent factor values such as A, b, or C=3. Hence, DAGs represent causal relationships
between factors or variables, whereas CHGs represent causal relationships between factor
values.

There are two types of CHGs: set-CHGs for causal structures involving values of crisp-
set or fuzzy-set factors and mv-CHGs for structures of multi-value factors. Besides nodes
and directed hyperedges, set-CHGs contain two further graphical elements: “•” for bundling
nodes in a conjunction and “♦” at tails of hyperedges for negating factor values. Mv-CHGs
also symbolize conjunction through “•”, but instead of a negation sign, they feature numeric
values directly assigned to the tails and heads of hyperedges indicating the factor values that
are connected by the hyperedge. In both set- and mv-CHGs, hyperedges with the same head

13For more on hypergraphs see e.g. (Gallo et al. 1993) or (Bretto 2013).
14Such hyperedges are also called backward hyperedges, cf. (Gil-Pons et al. 2024).

https://cran.r-project.org/web/packages/cna/cna.pdf

Michael Baumgartner, Mathias Ambühl 35

WS

WNP

ESWM LP QU

(a) set-CHG

E

1

A

1

B

2

G

1

1

1

C

0

D

2

F

1

0

(b) mv-CHG

Figure 3: Causal Hypergraphs.

form a disjunction. Figure 3a is an example of a set-CHG, and Figure 3b an example of an
mv-CHG.

The R package causalHyperGraph provides functions to visualize the output of cna() as
CHGs. The most basic plotting function is plot(x), which takes a solution object x of cna()

as input an draws the solution formulas contained in x as CHGs. For example, the following
code draws the set-CHG in Figure 3a from the solution object cna() infers from d.women:

R> library(causalHyperGraph)

R> ana.d.women <- cna(d.women)

R> plot(ana.d.women)

There is also a function causalHyperGraph(x) that takes a character vector x expressing
MINUS-formulas as input and draws the corresponding CHGs. To illustrate, the mv-CHG in
Figure 3b is drawn as follows:

R> causalHyperGraph("(A=1*B=2 + C=0*D=2 <-> E=1)*(E=1 + F=0 <-> G=1)")

6. Interpreting the output

The ultimate output of cna() and csf() is the set csfO of csf, which may coincide with asf
if the data contain only one endogenous factor. The causal inferences warranted by the data
input x, relative to the selected measures and their associated con and cov thresholds, while
adhering to the specified outcome, ordering, exclude, and maxstep settings, must be drawn
from the set csfO. This section explains the final interpretative step in a CNA analysis.

There are three possible types of outputs:

1. csfO contains no csf (and, correspondingly, no asf);

2. csfO contains exactly one csf (and, correspondingly, exactly one asf for each endogenous
factor);

https://cran.r-project.org/package=causalHyperGraph

36 cna: Configurational Causal Inference and Modeling

3. csfO contains more than one csf (and, correspondingly, more than one asf for at least
one endogenous factor).

6.1. No solution

As indicated in section 3.4, a null result can have two sources: either the data are too noisy
to render the con and cov thresholds satisfiable or the maxstep is too low. If increasing
maxstep does not yield solutions at the chosen con and cov thresholds, the latter may be
lowered, preferably with a concomitant robustness analysis as described in section 3.2. If no
solutions are recovered at con = cov = .7, the data are too noisy to warrant reliable causal
inferences. Users are then advised to go back to the data and follow standard guidelines
(known from other methodological frameworks) to improve data quality, e.g. by integrating
further relevant factors into the analysis, enhancing the control of unmeasured causes, expand-
ing the population of cases or disregarding inhomogeneous cases, correcting for measurement
error, supplying missing values, etc.

It must be emphasized again (see section 2.4) that, under normal circumstances, an empty
csfO does not warrant the conclusion that the factors contained in the data input x are
causally irrelevant to one another. The inference to causal irrelevance is much more demand-
ing than the inference to causal relevance. A null result only furnishes evidence for causal
irrelevance if there are independent reasons to assume that all potentially relevant factors are
measured in x and that x exhausts the space of empirically possible configurations.

6.2. A unique solution

That csfO contains exactly one csf is the optimal completion of a CNA analysis. It means
that the data input x contains sufficient evidence for a determinate causal inference. The
factor values on the left-hand sides of “↔” in the asf constituting that csf can be interpreted
as causes of the factor values on the right-hand sides. Moreover, their conjunctive, disjunctive,
and sequential groupings reflect the actual properties of the data-generating causal structure.

Plainly, as with any other method of causal inference, the reliability of CNA’s causal conclu-
sions essentially hinges on the quality of the processed data. If the data satisfy homogeneity
(see section 2.4), a unique solution is guaranteed to correctly reflect the data-generating
structure. With increasing data deficiencies (noise, fragmentation), the (inductive) risk of
committing causal fallacies inevitably increases as well. For details on the degree to which
the reliability of CNA’s causal conclusions decreases with increasing data deficiencies see
(Baumgartner and Ambühl 2020) and (Parkkinen and Baumgartner 2023).

6.3. Multiple solutions

If csfO has more than one element, the processed data underdetermine their own causal
modeling. That means the evidence contained in the data is insufficient to determine which
of the solutions contained in csfO corresponds to the data-generating causal structure. An
output set of multiple solutions {csf1, csf2, ..., csfn} is to be interpreted disjunctively: the
data-generating causal structure is

csf1 OR csf2 OR ... OR csfn

Michael Baumgartner, Mathias Ambühl 37

but, based on the evidence contained in the data, it is ambiguous which of these csf is actually
operative.

That empirical data underdetermine their own causal modeling is a very common phenomenon
in all methodological traditions (Simon 1954; Spirtes et al. 2000, 59-72; Kalisch et al. 2012;
Eberhardt 2013; Baumgartner and Thiem 2017). But while some methods are designed
to automatically generate all fitting models, e.g. Bayes nets methods and configurational
comparative methods, other methods rely on search heuristics that zoom in on one best fitting
model only, e.g. logic regression or regression analytic methods, more generally. Whereas
model ambiguities have long been a thoroughly investigated topic in certain traditions, such as
Bayes nets methods, they are only beginning to be studied in the literature on configurational
comparative methods.

CNA—on a par with any other method—cannot disambiguate what is empirically underde-
termined. Rather, it draws those and only those causal conclusions for which the data de facto
contain evidence. In cases of empirical underdetermination it therefore renders transparent
all data-fitting models and leaves the disambiguation up to the analyst.

That cna() and csf() issue multiple solutions for some data input x does not necessarily mean
that x is deficient. In fact, even data that are ideal by all quality standards of configurational
causal modeling can give rise to model ambiguities. The following simulates a case in point:

R> dat7 <- selectCases("a*B + A*b + B*C <-> D")

R> printCols <- c("condition", "con", "cov", "exhaustiveness","faithfulness")

R> csf(cna(dat7, details = c("ex", "fa")))[printCols]

condition con cov exhaustiveness faithfulness

1 a*B + A*b + A*C <-> D 1 1 1 1

2 a*B + A*b + B*C <-> D 1 1 1 1

Measures:

con: standard consistency

cov: standard coverage

dat7 induces perfect consistency and coverage scores and is free of fragmentation; it contains
all and only the configurations that are compatible with the target structure, which accord-
ingly is exhaustively and faithfully reflected in dat7. Nonetheless, two models can be inferred.
The causal structures expressed by these two models generate the exact same data, meaning
they are empirically indistinguishable.

Although a unique solution is more determinate and, thus, preferable to multiple solutions,
the fact that cna() and csf() generate multiple equally data-fitting models is not generally
an uninformative result. In the above example, both models feature a∗B + A∗b. That is, the
data contain enough evidence to establish the joint relevance of a∗B and of A∗b for D (on
alternative paths). What is more, it can be conclusively inferred that D has a further complex
cause, viz. either A∗C or B∗C. It is merely an open question which of these candidate causes
is actually operative.

That different model candidates have some msc in common is a frequent phenomenon. Here’s
a real-life example, where two alternative causes, viz. C=1 + F =2, are present in all solutions:

R> csf(cna(d.pban, cov = .95, maxstep = c(3, 5, 10)))["condition"]

38 cna: Configurational Causal Inference and Modeling

condition

1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1

2 C=1 + F=2 + C=0*T=2 + C=2*V=0 <-> PB=1

3 C=1 + F=2 + C=2*F=0 + C=0*F=1 + F=1*V=0 <-> PB=1

4 C=1 + F=2 + C=2*F=0 + C=0*T=2 + F=1*V=0 <-> PB=1

5 C=1 + F=2 + C=0*F=1 + C=2*T=1 + T=2*V=0 <-> PB=1

6 C=1 + F=2 + C=0*F=1 + T=1*V=0 + T=2*V=0 <-> PB=1

7 C=1 + F=2 + C=0*T=2 + C=2*T=1 + T=2*V=0 <-> PB=1

8 C=1 + F=2 + C=0*T=2 + T=1*V=0 + T=2*V=0 <-> PB=1

Such commonalities can be reported as conclusive results.

Moreover, even though multiple solutions do not permit pinpointing the causal structure
behind an outcome, they nonetheless allow for constraining the range of possibilities. In a
context where the causes of some outcome are unknown it amounts to a significant gain of
scientific insight when a study can show that the structure behind that outcome has one of a
small number of possible forms, even if it cannot determine which one exactly.

However, the larger the amount of data-fitting solutions and the lower the amount of com-
monalities among them, the lower the overall informativeness of a CNA output. Indeed, if
data fragmentation is high, meaning if there are many unobserved possible configurations, the
ambiguity ratio in configurational causal modeling can reach dimensions where nothing at all
can be concluded about the data-generating structure any more. Hence, a highly ambiguous
result is on a par with a null result. A telling example of this sort is d.volatile which was
discussed in section 3.4 above (cf. also Baumgartner and Thiem 2017).

The model fit scores and solution attributes reported in the output objects of cna() and csf()

often provide some leverage to narrow down the space of model candidates. For instance, if,
in a particular discovery context, there is reason to assume that data have been collected as
exhaustively as possible, to the effect that most configurations compatible with an investigated
causal structure should be contained in the data, the model space may be restricted to csf
with a high score on exhaustiveness. By way of example, for d.pban a total of 14 csf are
built at cov = .95:

R> ana.pban <- cna(d.pban, cov = .95, maxstep = c(6, 6, 10),

+ details = c("fa", "ex"))

R> csf.pban <- csf(ana.pban)

R> length(csf.pban$condition)

[1] 14

If only csf with exhaustiveness >= .85 are considered, the amount of candidate csf is
reduced to 2:

R> csf.pban.ex <- subset(csf.pban, exhaustiveness >= .85)

R> length(csf.pban.ex$condition)

[1] 2

Michael Baumgartner, Mathias Ambühl 39

To also resolve this final ambiguity, complexity may be brought to bear. Among equally
data-fitting models the less complex ones are generally preferable because they are less likely
to be overfitted and make less causal claims, resulting in a lower error risk. In the above
example, if complexity is required to be as low as possible, only one model remains:

R> subset(csf.pban.ex, complexity == min(csf.pban.ex$complexity))

outcome condition con cov complexity

1 PB=1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1 1 0.952 6

faithfulness exhaustiveness

1 0.941 0.889

Measures:

con: standard consistency

cov: standard coverage

Clearly though, the fit parameters and solution attributes provided by cna() and csf() will
not always provide a basis for complete ambiguity elimination. The evidence contained in
data is often insufficient to draw determinate causal conclusions. In such instances, data-
external sources of information, such as prior causal knowledge or background theories, may
be available that can be used to suitably constrain the search space of cna() via the arguments
outcome, ordering, or exclude (see section 3.3 above). This tends to bring down ambiguities
significantly. Moreover, the next section will show how knowledge about individual cases in
the data can be leveraged to select among the model candidates. Nevertheless, it may also
be impossible to resolve all ambiguities when the evidence in the data is complemented by
data-external sources of information.

The most important course of action in the face of ambiguities is to render them transparent.
By default, readers of CNA publications should be informed about the degree of ambiguity.
Full transparency with respect to model ambiguities, first, allows readers to determine for
themselves how much confidence to have in the conclusions drawn in a study, and second, paves
the way for follow-up studies that are purposefully designed to resolve previously encountered
ambiguities.

6.4. “Back to the cases”

When CNA is applied to small- or intermediate-N data, researchers may be familiar with
some or all of the cases in their data. For instance, they may know that in a particular case
certain causes of an outcome are operative while others are not. Or they may know why
certain cases are outliers or why others feature an outcome but none of the potential causes.
A proper interpretation of a CNA result may therefore require that the performance of the
obtained models be assessed on the case level and against the background of the available
case knowledge.

The function that facilitates the evaluation of recovered msc, asf, and csf on the case level
is condition(x, ct, measures). Its first input is a character vector x specifying Boolean
expressions, typically asf or csf. The second input is a data frame or configuration table
ct. The measures argument is the same as in the cna() function (see section 3.2 above):
it expects a character vector of length 2 indicating the measures to be used for evaluating
sufficiency and necessity. In case of cs or mv data, the output of condition() then highlights

40 cna: Configurational Causal Inference and Modeling

in which cases x is instantiated, whereas for fs data, the output lists relevant membership
scores in exogenous and endogenous factors. Moreover, if x is an asf or csf, condition()

issues their scores on the chosen measures.

To illustrate, we re-analyze d.autonomy:

R> dat.aut.2 <- d.autonomy[15:30, c("AU","EM","SP","CO","RE","DE")]

R> ana.aut.5 <- cna(dat.aut.2, outcome = c("EM","AU"), con = .91, cov = .91)

R> condition(csf(ana.aut.5)$condition, dat.aut.2)

That function call returns a list of three tables, each corresponding to one of the three csf
contained in ana.aut.5 and breaking down the relevant csf to the case level by contrasting
the membership scores in the left-hand and right-hand sides of the component asf. A case
with a higher left-hand score is one that pulls down the sufficiency measure (e.g. standard
consistency), whereas a case with a higher right-hand score pulls down the necessity measure
(e.g. standard coverage). For each csf, condition() moreover returns overall scores on the
chosen evaluation measures as well as the corresponding scores for the component asf.

The three csf in ana.aut.5 differ only in regard to their component asf for outcome AU .
The function group.by.outcome(condList), which takes an output object condList of
condition() as input, lets us more specifically compare these different asf with respect
to how they fare on the case level.

R> group.by.outcome(condition(asf(ana.aut.5)$condition, dat.aut.2))$AU

SP EM*RE+re*DE EM*RE+CO*DE AU | n.obs

ENacg1 1.0 1.0 1.0 1.0 | 1

ENacg2 0.6 0.4 0.4 0.4 | 1

ENacg3 0.8 0.6 0.9 0.8 | 1

ENacg4 0.6 1.0 1.0 1.0 | 1

ENacg5 0.4 0.4 0.4 0.4 | 1

ENacg6 0.6 0.7 0.7 0.6 | 1

ENacg7 1.0 0.8 0.8 1.0 | 1

ENacg8 1.0 1.0 1.0 1.0 | 1

ENacto1 0.4 0.4 0.6 0.4 | 1

ENacto2 0.4 0.4 0.4 0.4 | 1

ENacosa1 0.4 0.4 0.2 0.4 | 1

ENacosa2 0.4 0.4 0.4 0.2 | 1

ENacosa3 0.4 0.4 0.4 0.6 | 1

ENacat1 0.4 0.4 0.4 0.2 | 1

ENacat2 0.4 0.4 0.4 0.6 | 1

ENacat3 0.4 0.6 0.4 0.4 | 1

The first three columns of that table list the membership scores of each case in the left-
hand sides of the asf, and the fourth column reports the membership scores in AU . The
table shows that the first asf (SP ↔ AU) outperforms the other asf in cases ENacg3/6/7,
ENacto1, ENacosa1, and ENacat3, while it is outperformed by another asf in cases ENacg2
and ENacg4. In all other cases, the three solution candidates fare equally. If the analyst is
closely familiar with some of these cases, performance differences on the case level can help

Michael Baumgartner, Mathias Ambühl 41

to choose among the candidates. For instance, if it is known that there are no other factors
operative in case ENacg7 than the ones contained in dat.aut.2, it follows that ENacg7’s
full membership in AU must be brought about by SP—which, in turn, disqualifies the other
solutions. By contrast, if the absence of other relevant factors can be assumed for case
ENacg4, the asf featuring SP as cause of AU is disqualified.

7. Benchmarking

Benchmarking the reliability of a method of causal inference is an essential element of method
development and validation. In a nutshell, it amounts to testing to what degree the bench-
marked method recovers the true data-generating structure ∆ or proper substructures of ∆
from data of varying quality. As ∆ is not normally known in real-life discovery contexts, the
reliability of a method cannot be assessed by applying it to real-life data. Instead, reliability
benchmarking is done in so-called inverse searches, which reverse the order of causal discovery
as it is commonly conducted in scientific practice. An inverse search comprises three steps:

(1) a data-generating causal structure ∆ is presupposed/drawn (as ground truth),

(2) artificial data δ is simulated from ∆, possibly featuring various deficiencies (e.g. noise
or fragmentation),

(3) δ is processed by the tested method in order to check whether its output meets the
tested reliability benchmark.

A benchmark test can measure various properties of a method’s output, for instance, whether
it is error-free, correct or complete, etc. As real-life data are often fragmented, methods for
MINUS discovery typically do not infer the complete ∆ from a real-life δ but only proper
substructures thereof (see section 2.4). Thus, since completeness is not CNA’s primary aim,
it should likewise not be the primary reliability benchmark for CNA; it is more important
that its output scores high on error-freeness and correctness.

CNA’s output, viz. the issued set csfO of csf, is error-free iff it does not entail a causal claim
that is false of the ground truth ∆ (i.e. no false positive). That can be satisfied in two ways:
either (i) csfO is empty, meaning no causal inferences are drawn, or (ii) csfO contains at
least one15 solution mi that is correct of ∆, which is the case iff mi is a submodel of ∆
(for details on the submodel relation see section 2.4). So, csfO satisfies the error-freeness
benchmark iff it satisfies conditions (i) or (ii). With increasing stringency, csfO can then be
said to be correct of ∆ iff condition (ii) is satisfied, meaning csfO actually contains at least
one solution mi that is a submodel of ∆, and thus correct. Finally, completeness measures
the informativeness of csfO, that is, the ratio of causal properties of ∆ captured and revealed
by the solutions in csfO.

The cna package provides many functionalities to conduct inverse searches that are tailor-
made to benchmark the output of cna() and csf(). The functions randomAsf() and
randomCsf() can be used to draw a data-generating structure ∆ in step (1). randomAsf(x)

generates a structure with a single outcome (i.e. a random asf) and randomCsf(x) an acyclic
multi-outcome structure (i.e. a random csf), where x is a data frame or configTable defin-
ing the factors and their possible values from which the structures are drawn. The function

15Recall from section 6.3 that an output containing multiple solutions is to be interpreted disjunctively;
and a disjunction of solutions is true iff at least one solution is true.

42 cna: Configurational Causal Inference and Modeling

selectCases(), which has already been discussed in section 3.1.2, can be employed to simu-
late data δ in the course of step (2). Finally, is.submodel(x, y) determines whether models
are related by the submodel relation, which, in turn, helps in assessing whether csfO is true
of ∆. is.submodel() takes a character vector x of asf as first input and tests whether the
elements of that vector are submodels of y, which, in turn, is a character string of length
1 representing the target asf (i.e. ∆). If ∆ is a csf with multiple outcomes, the function
causal_submodel(x, y) from the frscore package should be used to determine whether x is
true of y. Moreover, the function identical.model(x, y) is available to check whether x

(which must have length 1) and y are identical.

Against that background, the following might be a core of a error-freeness benchmark test that
simulates multi-value data with 20% missing observations and 10% random noise (i.e. cases
incompatible with the ground truth), and that runs cna() and csf() using the evaluation
measures of prevalence-adjusted consistency and antecedent-adjusted coverage at con = cov

= 0.75 and giving the algorithm and outcome specification.

R> # Draw a ground truth with outcomes A=1 and B=2.

R> fullData <- allCombs(c(4,4,4,4,4)) |> ct2df()

R> groundTruth <- randomCsf(fullData, outcome = c("A=1", "B=2"), compl = 3)

R> # Generate ideal data for groundTruth.

R> idealData <- ct2df(selectCases(groundTruth, fullData))

R> # Introduce 20% fragmentation.

R> fragData <- idealData[-sample(1:nrow(idealData), nrow(idealData)*0.2),]

R> # Add 10% random noise (cases incompatible with ground truth).

R> incompCases <- dplyr::setdiff(fullData, idealData)

R> x <- rbind(incompCases[sample(1:nrow(incompCases),

+ nrow(fragData) * 0.1),], fragData)

R> # Run CNA with outcome specification and PAcon/AAcov as evaluation

R> # measures.

R> csfs <- csf(cna(x, outcome = c("A=1", "B=2"), con = .75, cov = .75,

+ maxstep = c(3, 3, 12), measures = c("PAcon", "AAcov")))

R> # Check whether no causal error (no false positive) is returned.

R> if(length(csfs$condition)==0) {

+ TRUE } else {any(unlist(lapply(csfs$condition,

+ function(x) frscore::causal_submodel(x, groundTruth, fullData))))}

Every re-run of this code chunk generates a different ground truth and different data. In
some runs CNA passes the test, in others it does not. To determine CNA’s error-freeness
ratio under these test conditions, the above core must be embedded in a suitable test loop.
To estimate CNA’s overall error-freeness ratio, the test conditions should be systematically
varied by, for instance, varying the complexity of the ground truth, the degree of fragmen-
tation and noise, the evaluation measures and corresponding thresholds, or by drawing the
noise with a bias or supplying CNA with more or less prior causal information via ordering

or exclude. Correctness and completeness tests can be designed analogously, by suitably
modifying the last line that evaluates the solution object csfs. For single-outcome structures
(asf), benchmark tests with some of the above variations have been conducted in (Baum-
gartner and Ambühl 2020; Baumgartner and Falk 2023b; Swiatczak and Baumgartner 2024;
De Souter 2024; De Souter and Baumgartner 2025); corresponding tests for multi-outcome

https://cran.r-project.org/package=frscore

Michael Baumgartner, Mathias Ambühl 43

structures (csf) have been carried out in (Parkkinen and Baumgartner 2023).

8. Summary

This vignette introduced the theoretical foundations as well as the main functions of the cna R

package for configurational causal inference and modeling with Coincidence Analysis (CNA).
Moreover, we explained how to interpret the output of CNA, provided some guidance for how
to use various model fit parameters for the purpose of ambiguity reduction, and supplied a
benchmarking template.

CNA is currently the only method searching for (M)INUS causation in data that builds multi-
outcome models and, hence, not only orders causes conjunctively and disjunctively but also
sequentially. Moreover, it builds causal models on the basis of a bottom-up algorithm that
is unique among configurational comparative methods and gives CNA an edge over other
methods in guaranteeing the redundancy-freeness of its models, which, in turn, is crucial for
their causal interpretability. Overall, CNA constitutes a powerful methodological alternative
for researchers interested in causal structures featuring conjunctivity and disjunctivity. The
cna package makes that inferential power available to end-users.

Acknowledgments

We are grateful to Alrik Thiem, Martyna Klein, Jonathan Freitas, and Luna De Souter for
helpful comments on earlier drafts of this vignette, and we thank the Toppforsk-program of
the Trond Mohn Foundation and the University of Bergen (grant nr. 811886), the Research
Council of Norway (grant nr. 326215), and the Swiss National Science Foundation (grant nr.
PP00P1_144736/1) for generous support of the research behind the cna package over the
years.

References

Ambühl M, Baumgartner M (2022). cnaOpt: Optimizing Consistency and Coverage in Con-
figurational Causal Modeling. R Package Version 0.5.2. URL https://cran.r-project.

org/package=cnaOpt.

Baumgartner M (2009a). “Inferring Causal Complexity.” Sociological Methods & Research,
38, 71–101.

Baumgartner M (2009b). “Uncovering Deterministic Causal Structures: A Boolean Ap-
proach.” Synthese, 170, 71–96.

Baumgartner M (2013). “A Regularity Theoretic Approach to Actual Causation.” Erkenntnis,
78, 85–109.

Baumgartner M (2015). “Parsimony and Causality.” Quality & Quantity, 49, 839–856.

Baumgartner M (2020). “Causation.” In D Berg-Schlosser, B Badie, L Morlino (eds.), The
SAGE Handbook of Political Science, pp. 305–321. SAGE, London.

https://cran.r-project.org/package=cnaOpt
https://cran.r-project.org/package=cnaOpt

44 cna: Configurational Causal Inference and Modeling

Baumgartner M, Ambühl M (2020). “Causal Modeling with Multi-Value and Fuzzy-
Set Coincidence Analysis.” Political Science Research and Methods, 8, 526–542. doi:

10.1017/psrm.2018.45.

Baumgartner M, Ambühl M (2021). “Optimizing Consistency and Coverage in Configu-
rational Causal Modeling.” Sociological Methods & Research, 52(3), 1288–1320. doi:

10.1177/0049124121995554.

Baumgartner M, Falk C (2023a). “Boolean Difference-Making: A Modern Regularity Theory
of Causation.” The British Journal for the Philosophy of Science, 74(1), 171–197. doi:

10.1093/bjps/axz047.

Baumgartner M, Falk C (2023b). “Configurational Causal Modeling and Logic Regression.”
Multivariate Behavioral Research, 58(2), 292–310. doi:10.1080/00273171.2021.1971510.

Baumgartner M, Thiem A (2017). “Model Ambiguities in Configurational Comparative Re-
search.” Sociological Methods & Research, 46(4), 954–987.

Baumgartner M, Thiem A (2020). “Often Trusted but Never (Properly) Tested: Evaluating
Qualitative Comparative Analysis.” Sociological Methods & Research, 49, 279–311. doi:

10.1177/0049124117701487.

Beirlaen M, Leuridan B, Van De Putte F (2018). “A logic for the discovery of deterministic
causal regularities.” Synthese, 195(1), 367–399. doi:10.1007/s11229-016-1222-x.

Bowran AP (1965). A Boolean Algebra. Abstract and Concrete. Macmillan, London.

Brambor T, Clark WR, Golder M (2006). “Understanding Interaction Models: Improving
Empirical Analyses.” Political Analysis, 14(1), 63–82. doi:10.1093/pan/mpi014.

Braumoeller B (2015). QCAfalsePositive: Tests for Type I Error in Qualitative Com-
parative Analysis (QCA). R package version 1.1.1, URL https://CRAN.R-project.org/

package=QCAfalsePositive.

Bretto A (2013). Hypergraph Theory: An Introduction. Springer International Publishing.

Cronqvist L, Berg-Schlosser D (2009). “Multi-Value QCA (mvQCA).” In B Rihoux, CC Ragin
(eds.), Configurational Comparative Methods: Qualitative Comparative Analysis (QCA)
and Related Techniques, pp. 69–86. Sage Publications, London.

Csikszentmihalyi M (1975). Beyond Boredom and Anxiety. Jossey-Bass Publishers, San
Francisco.

Culverhouse R, Suarez BK, Lin J, Reich T (2002). “A Perspective on Epistasis: Limits of
Models Displaying No Main Effect.” The American Journal of Human Genetics, 70(2),
461–471. doi:10.1086/338759.

De Souter L (2024). “Evaluating Boolean Relationships in Configurational Comparative
Methods.” Journal of Causal Inference, 12(1). doi:10.1515/jci-2023-0014.

De Souter L, Baumgartner M (2025). “New sufficiency and necessity measures for model
building with Coincidence Analysis.” Zenodo. URL https://doi.org/10.5281/zenodo.

13619580.

https://doi.org/10.1017/psrm.2018.45
https://doi.org/10.1017/psrm.2018.45
https://doi.org/10.1177/0049124121995554
https://doi.org/10.1177/0049124121995554
https://doi.org/10.1093/bjps/axz047
https://doi.org/10.1093/bjps/axz047
https://doi.org/10.1080/00273171.2021.1971510
https://doi.org/10.1177/0049124117701487
https://doi.org/10.1177/0049124117701487
https://doi.org/10.1007/s11229-016-1222-x
https://doi.org/10.1093/pan/mpi014
https://CRAN.R-project.org/package=QCAfalsePositive
https://CRAN.R-project.org/package=QCAfalsePositive
https://doi.org/10.1086/338759
https://doi.org/10.1515/jci-2023-0014
https://doi.org/10.5281/zenodo.13619580
https://doi.org/10.5281/zenodo.13619580

Michael Baumgartner, Mathias Ambühl 45

Dusa A (2024). QCA: A Package for Qualitative Comparative Analysis. R Package Version
3.23. URL https://cran.r-project.org/package=QCA.

Eberhardt F (2013). “Experimental Indistinguishability of Causal Structures.” Philosophy of
Science, 80(5), 684–696.

Gallo G, Longo G, Pallottino S, Nguyen S (1993). “Directed Hypergraphs and Applications.”
Discrete Applied Mathematics, 42(2), 177–201. doi:10.1016/0166-218X(93)90045-P.

Gil-Pons R, Ward M, Miller L (2024). “Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-
Hard.” Information Processing Letters, 184, 106433. doi:10.1016/j.ipl.2023.106433.

Graßhoff G, May M (2001). “Causal Regularities.” In W Spohn, M Ledwig, M Esfeld (eds.),
Current Issues in Causation, pp. 85–114. Mentis, Paderborn.

Greenland S, Pear J, Robins JM (1999). “Causal Diagrams for Epidemiologic Research.”
Epidemiology, 10(1), 37–48.

Hájek P (1998). Metamathematics of Fuzzy Logic. Kluwer, Dordrecht.

Hume D (1999 (1748)). An Enquiry Concerning Human Understanding. Oxford University
Press, Oxford.

Kalisch M, Maechler M, Colombo D, Maathuis MH, Buehlmann P (2012). “Causal Inference
Using Graphical Models with the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26.

Kooperberg C, Ruczinski I (2005). “Identifying Interacting SNPs Using Monte Carlo Logic
Regression.” Genetic Epidemiology, 28(2), 157–170. doi:10.1002/gepi.20042.

Kooperberg C, Ruczinski I (2023). LogicReg: Logic Regression. R package version 1.6.6. URL
https://CRAN.R-project.org/package=LogicReg.

Lemmon EJ (1965). Beginning Logic. Chapman & Hall, London.

Mackie JL (1974). The Cement of the Universe. A Study of Causation. Clarendon Press,
Oxford.

Oana IE, Medzihorsky J, Quaranta M, Schneider CQ (2025). SetMethods: Functions for
Set-Theoretic Multi-Method Research and Advanced QCA. R package version 4.1, URL
https://CRAN.R-project.org/package=SetMethods.

Parkkinen VP, Baumgartner M (2023). “Robustness and Model Selection in Configurational
Causal Modeling.” Sociolocial Methods & Research, 52(1), 176–208.

Parkkinen VP, Baumgartner M (2024). frscore: Functions for Calculating Fit-Robustness of
CNA-solutions. R Package Version 0.4.1. URL https://CRAN.R-project.org/package=

frscore.

Ragin CC (2006). “Set Relations in Social Research: Evaluating Their Consistency and
Coverage.” Political Analysis, 14(3), 291–310.

https://cran.r-project.org/package=QCA
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/j.ipl.2023.106433
https://doi.org/10.1002/gepi.20042
https://CRAN.R-project.org/package=LogicReg
https://CRAN.R-project.org/package=SetMethods
https://CRAN.R-project.org/package=frscore
https://CRAN.R-project.org/package=frscore

46 cna: Configurational Causal Inference and Modeling

Ragin CC (2008). Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago
Press, Chicago.

Rihoux B, Ragin CC (eds.) (2009). Configurational Comparative Methods. Qualitative Com-
parative Analysis (QCA) and Related Techniques. Sage, Thousand Oaks.

Ruczinski I, Kooperberg C, LeBlanc M (2003). “Logic Regression.” Journal of Computational
and Graphical Statistics, 12(3), 475–511. doi:10.1198/1061860032238.

Schneider CQ, Wagemann C (2012). Set-Theoretic Methods: A User’s Guide for Qualitative
Comparative Analysis (QCA) and Fuzzy-Sets in the Social Sciences. Cambridge University
Press, Cambridge.

Schwender H, Tietz T (2024). logicFS: Identification of SNP Interactions. R package version
2.26.0. doi:10.18129/B9.bioc.logicFS.

Siblini W, Fréry J, He-Guelton L, Oblé F, Wang YQ (2020). “Master Your Metrics with
Calibration.” In MR Berthold, A Feelders, G Krempl (eds.), Advances in Intelligent Data
Analysis XVIII, pp. 457–469. Springer, Cham. doi:10.1007/978-3-030-44584-3_36.

Simon HA (1954). “Spurious Correlation: A Causal Interpretation.” Journal of the American
Statistical Association, 49(267), 467–479.

Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction, and Search. 2 edition. MIT
Press, Cambridge.

Swiatczak MD (2021). “Different Algorithms, Different Models.” Quality & Quantity, 56(4),
1913–1937. doi:10.1007/s11135-021-01193-9.

Swiatczak MD, Baumgartner M (2024). “Data Imbalances in Coincidence Analysis: A
Simulation Study.” Sociological Methods & Research. ISSN 1552-8294. doi:10.1177/

00491241241227039.

Thiem A (2018). QCApro: Advanced Functionality for Performing and Evaluating Qualitative
Comparative Analysis. R Package Version 1.1-2. URL https://CRAN.R-project.org/

package=QCApro.

Thiem A, Duşa A (2013). Qualitative Comparative Analysis With R: A User’s Guide. Springer,
New York, NY.

Whitaker RG, Sperber N, Birken S, Baumgartner M, Thiem A, Cragun D, Damschroder L,
Miech E, Slade A (2020). “Coincidence Analysis: A New Method for Causal Inference in Im-
plementation Science.” Implementation Science, 15. doi:10.1186/s13012-020-01070-3.

Yakovchenko V, Miech EJ, Chinman MJ, Chartier M, Gonzalez R, Kirchner JE, Morgan
TR, Park A, Powell BJ, Proctor EK, Ross D, Waltz TJ, Rogal SS (2020). “Strategy
Configurations Directly Linked to Higher Hepatitis C Virus Treatment Starts: An Applied
Use of Configurational Comparative Methods.” Medical Care, 58(5). doi:10.1097/MLR.

0000000000001319.

https://doi.org/10.1198/1061860032238
https://doi.org/10.18129/B9.bioc.logicFS
https://doi.org/10.1007/978-3-030-44584-3_36
https://doi.org/10.1007/s11135-021-01193-9
https://doi.org/10.1177/00491241241227039
https://doi.org/10.1177/00491241241227039
https://CRAN.R-project.org/package=QCApro
https://CRAN.R-project.org/package=QCApro
https://doi.org/10.1186/s13012-020-01070-3
https://doi.org/10.1097/MLR.0000000000001319
https://doi.org/10.1097/MLR.0000000000001319

Michael Baumgartner, Mathias Ambühl 47

Appendix

Partial structural redundancies

As discussed in section 2.3, conjunctively concatening atomic MINUS-formulas or asf may give
rise to structural redundancies (cf. also Baumgartner and Falk 2023a), which are eliminated
in stage 4 of the CNA algorithm. While structural redundancies of whole asf can occur in
both ideal and noisy data, the latter type of data may induce yet another, but related, type of
redundancy, which is not documented anywhere in the research literature and, thus, requires
explicit discussion in this Appendix.

When data do not feature strict Boolean dependencies, building csf from the inventory of
asf recovered in stage 3 of the CNA algorithm may lead to the redundancy of proper parts
of asf —parts which are not redundant when those asf are considered in isolation. That
is, a complex structure can entail that one of its asf has a redundant proper part, which
redundancy, however, is not visible in the data. We call this a partial structural redundancy.

A concrete example helps to clarify the problem. Consider the solutions obtained from ana-
lyzing the data set d.autonomy without elimination of partial structural redundancies. This
is achieved by setting the developer argument inus.only to FALSE, which adds an addi-
tional column, inus, to the output, indicating with TRUE/FALSE whether the formula in the
corresponding row qualifies as a MINUS-formula:

R> printCols <- c("condition", "con", "cov", "inus")

R> csf(cna(d.autonomy, ordering = "AU", con = .9, cov = .94,

+ maxstep = c(2, 2, 8), inus.only = FALSE))[printCols]

condition con cov inus

1 (SP*RE + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

2 (SP*co + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

3 (SP*RE + ci*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 FALSE

4 (SP*RE + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

5 (SP*co + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

6 (SP*RE + ci*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 FALSE

Measures:

con: standard consistency

cov: standard coverage

Solution #3 in that list logically entails (5):

(SP ∗RE + ci∗cn ↔ EM) ∗ (ci + EM ↔ SP) (5)

That is, if the behavior of EM is regulated by the first asf in solution #3 and (5), co in #3—
for pure logical reasons—cannot make a difference to SP and, hence, is redundant. That
partial structural redundancy, however, is not visible in the data d.autonomy where EM
alone (i.e. without co) is not sufficient for SP with standard consistency 0.9, which is the
threshold chosen for the above analysis. By itself, EM only reaches a standard consistency
of 0.891 for SP , which can be shown using the condTbl() function as follows:

48 cna: Configurational Causal Inference and Modeling

R> condTbl("EM -> SP", configTable(d.autonomy))

outcome condition con cov complexity

1 SP EM -> SP 0.891 0.863 1

Measures:

con: standard consistency

cov: standard coverage

Hence, the data suggest that co makes a difference to SP , to the effect that meeting con

= 0.9 for all msc requires EM∗co (and not EM alone) to be treated as cause of SP . At the
same time, that (5) logically follows from solution #3 implies that it is logically excluded that
co is a difference-maker of SP in the context of solution #3. The result is a contradiction:
the data call for including co as cause of SP , whereas the structure inferred from that data
entails not to include co.

The case of solution #6 is analogous. Solution #6 not only entails (5) but is logically equiv-
alent to it. The upshot is the same: the data determine that some causal relevance relation
obtains, which is logically excluded by the very structure inferred from the data. Such in-
consistencies cannot be resolved by modifying solutions #3 and #6; rather, these solutions
are not, and cannot be transformed into, well-formed MINUS-formulas that would meet con.
They must be eliminated from the output. This is exactly what happens when cna() and
csf() run normally, that is, without setting inus.only to FALSE:

R> csf(cna(d.autonomy, ordering = "AU", con = .9, cov = .94,

+ maxstep = c(2, 2, 8), details = "inus"))[printCols]

condition con cov inus

1 (SP*RE + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

2 (SP*co + CO*cn <-> EM)*(ci + EM*co <-> SP) 0.938 0.947 TRUE

3 (SP*RE + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

4 (SP*co + CO*cn <-> EM)*(ci + EM*RE <-> SP) 0.928 0.947 TRUE

Measures:

con: standard consistency

cov: standard coverage

Affiliation:

Michael Baumgartner
University of Bergen
Department of Philosophy
Postboks 7805
5020 Bergen
Norway
E-mail: michael.baumgartner@uib.no

URL: https://m-baum.github.io

mailto:michael.baumgartner@uib.no
https://m-baum.github.io

Michael Baumgartner, Mathias Ambühl 49

Mathias Ambühl
Consult AG Statistical Services
Tramstrasse 10
8050 Zürich
E-mail: mathias.ambuehl@consultag.ch

mailto:mathias.ambuehl@consultag.ch

	Introduction
	Background
	Factors and their values
	Boolean operations
	(M)INUS causation
	Inferring MINUS causation from data

	The input of CNA
	Data
	Configuration tables
	Data simulations

	Evaluating sufficiency and necessity
	Crisp-set and multi-value data
	Fuzzy-set data
	Choosing measures and setting thresholds

	Outcome, ordering, and exclude
	Maxstep
	Negated outcomes

	The CNA algorithm
	The output of CNA
	Customizing the output
	Exhaustiveness
	Coherence
	Cycles
	Plotting the output

	Interpreting the output
	No solution
	A unique solution
	Multiple solutions
	"Back to the cases"

	Benchmarking
	Summary

