
Package ‘crew.cluster’
April 14, 2025

Title Crew Launcher Plugins for Traditional High-Performance Computing
Clusters

Description In computationally demanding analysis projects,
statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems,
ranging from traditional clusters to cloud services.
The 'crew.cluster' package extends the 'mirai'-powered
'crew' package with worker launcher plugins for traditional
high-performance computing systems.
Inspiration also comes from packages 'mirai' by Gao (2023)
<https://github.com/r-lib/mirai>,
'future' by Bengtsson (2021) <doi:10.32614/RJ-2021-048>,
'rrq' by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrq>,
'clustermq' by Schubert (2019) <doi:10.1093/bioinformatics/btz284>),
and 'batchtools' by Lang, Bischl, and Surmann (2017).
<doi:10.21105/joss.00135>.

Version 0.3.7

License MIT + file LICENSE

URL https://wlandau.github.io/crew.cluster/,

https://github.com/wlandau/crew.cluster

BugReports https://github.com/wlandau/crew.cluster/issues

Depends R (>= 4.0.0)

Imports crew (>= 1.1.0), ps, lifecycle, R6, rlang, utils, vctrs, xml2,
yaml

Suggests knitr (>= 1.30), markdown (>= 1.1), rmarkdown (>= 2.4),
testthat (>= 3.0.0)

Encoding UTF-8

Language en-US

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

1

https://github.com/r-lib/mirai
https://doi.org/10.32614/RJ-2021-048
https://github.com/mrc-ide/rrq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://wlandau.github.io/crew.cluster/
https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster/issues

2 crew.cluster-package

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Michael Gilbert Levin [aut] (<https://orcid.org/0000-0002-9937-9932>),
Brendan Furneaux [aut] (<https://orcid.org/0000-0003-3522-7363>),
Eli Lilly and Company [cph, fnd]

Maintainer William Michael Landau <will.landau.oss@gmail.com>

Repository CRAN

Date/Publication 2025-04-14 20:50:01 UTC

Contents
crew.cluster-package . 2
crew_class_launcher_lsf . 3
crew_class_launcher_pbs . 4
crew_class_launcher_sge . 6
crew_class_launcher_slurm . 8
crew_class_monitor_sge . 9
crew_class_monitor_slurm . 10
crew_controller_lsf . 11
crew_controller_pbs . 16
crew_controller_sge . 20
crew_controller_slurm . 24
crew_launcher_lsf . 28
crew_launcher_pbs . 32
crew_launcher_sge . 35
crew_launcher_slurm . 38
crew_monitor_sge . 41
crew_monitor_slurm . 42
crew_options_lsf . 42
crew_options_pbs . 44
crew_options_sge . 47
crew_options_slurm . 49

Index 52

crew.cluster-package crew.cluster: crew launcher plugins for traditional high-performance
computing clusters

Description

In computationally demanding analysis projects, statisticians and data scientists asynchronously de-
ploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services.
The crew.cluster package extends the mirai-powered crew package with worker launcher plu-
gins for traditional high-performance computing systems. Inspiration also comes from packages
mirai, future, rrq, clustermq, and batchtools.

https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0002-9937-9932
https://orcid.org/0000-0003-3522-7363
https://github.com/r-lib/mirai
https://wlandau.github.io
https://github.com/r-lib/mirai
https://future.futureverse.org/
https://mrc-ide.github.io/rrq/
https://mschubert.github.io/clustermq/
https://mllg.github.io/batchtools/

crew_class_launcher_lsf 3

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

crew_class_launcher_lsf

[Experimental] LSF launcher class

Description

R6 class to launch and manage LSF workers.

Details

See crew_launcher_lsf().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_lsf

Methods

Public methods:
• crew_class_launcher_lsf$validate()

• crew_class_launcher_lsf$script()

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_lsf$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_lsf$script(name)

https://github.com/mschubert/clustermq/tree/master/inst
https://github.com/mschubert/clustermq/tree/master/inst

4 crew_class_launcher_pbs

Arguments:

name Character of length 1, name of the job. For inspection purposes, you can supply a mock
job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_lsf(
lsf_cwd = getwd(),
lsf_log_output = "log_file_%J.log",
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = 4

)
launcher$script(name = "my_job_name")
}

See Also

Other lsf: crew_controller_lsf(), crew_launcher_lsf(), crew_options_lsf()

Examples

--
Method `crew_class_launcher_lsf$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_lsf(

lsf_cwd = getwd(),
lsf_log_output = "log_file_%J.log",
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = 4

)
launcher$script(name = "my_job_name")
}

crew_class_launcher_pbs

[Maturing] PBS/TORQUE launcher class

Description

R6 class to launch and manage PBS/TORQUE workers.

crew_class_launcher_pbs 5

Details

See crew_launcher_pbs().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_pbs

Methods

Public methods:

• crew_class_launcher_pbs$validate()

• crew_class_launcher_pbs$script()

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_pbs$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_pbs$script(name)

Arguments:

name Character of length 1, name of the job. For inspection purposes, you can supply a mock
job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_pbs(
pbs_cores = 2,
pbs_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

https://github.com/mschubert/clustermq/tree/master/inst

6 crew_class_launcher_sge

See Also

Other pbs: crew_controller_pbs(), crew_launcher_pbs(), crew_options_pbs()

Examples

--
Method `crew_class_launcher_pbs$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_pbs(

pbs_cores = 2,
pbs_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

crew_class_launcher_sge

[Maturing] SGE launcher class

Description

R6 class to launch and manage SGE workers.

Details

See crew_launcher_sge().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_sge

Methods

Public methods:
• crew_class_launcher_sge$validate()

• crew_class_launcher_sge$script()

Method validate(): Validate the launcher.

https://github.com/mschubert/clustermq/tree/master/inst

crew_class_launcher_sge 7

Usage:

crew_class_launcher_sge$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:

crew_class_launcher_sge$script(name)

Arguments:

name Character of length 1, name of the job. For inspection purposes, you can supply a mock
job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_sge(
sge_cores = 2,
sge_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

See Also

Other sge: crew_class_monitor_sge, crew_controller_sge(), crew_launcher_sge(), crew_monitor_sge(),
crew_options_sge()

Examples

--
Method `crew_class_launcher_sge$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_sge(

sge_cores = 2,
sge_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

8 crew_class_launcher_slurm

crew_class_launcher_slurm

[Experimental] SLURM launcher class

Description

R6 class to launch and manage SLURM workers.

Details

See crew_launcher_slurm().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_slurm

Methods

Public methods:
• crew_class_launcher_slurm$validate()

• crew_class_launcher_slurm$script()

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_slurm$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_slurm$script(name)

Arguments:
name Character of length 1, name of the job. For inspection purposes, you can supply a mock

job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

https://github.com/mschubert/clustermq/tree/master/inst

crew_class_monitor_sge 9

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_slurm(
slurm_log_output = "log_file_%A.log",
slurm_log_error = NULL,
slurm_memory_gigabytes_per_cpu = 4096

)
launcher$script(name = "my_job_name")
}

See Also

Other slurm: crew_class_monitor_slurm, crew_controller_slurm(), crew_launcher_slurm(),
crew_monitor_slurm(), crew_options_slurm()

Examples

--
Method `crew_class_launcher_slurm$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_slurm(

slurm_log_output = "log_file_%A.log",
slurm_log_error = NULL,
slurm_memory_gigabytes_per_cpu = 4096

)
launcher$script(name = "my_job_name")
}

crew_class_monitor_sge

[Experimental] SGE monitor class

Description

SGE monitor R6 class

Details

See crew_monitor_sge().

Super class

crew.cluster::crew_class_monitor_cluster -> crew_class_monitor_sge

10 crew_class_monitor_slurm

Methods

Public methods:

• crew_class_monitor_sge$jobs()

• crew_class_monitor_sge$terminate()

Method jobs(): List SGE jobs.

Usage:
crew_class_monitor_sge$jobs(user = ps::ps_username())

Arguments:

user Character of length 1, user name of the jobs to list.

Returns: A tibble with one row per SGE job and columns with specific details.

Method terminate(): Terminate one or more SGE jobs.

Usage:
crew_class_monitor_sge$terminate(jobs = NULL, all = FALSE)

Arguments:

jobs Character vector of job names or job IDs to terminate. Ignored if all is set to TRUE.
all Logical of length 1, whether to terminate all the jobs under your user name. This terminates

ALL your SGE jobs, regardless of whether crew.cluster launched them, so use with
caution!

Returns: NULL (invisibly).

See Also

Other sge: crew_class_launcher_sge, crew_controller_sge(), crew_launcher_sge(), crew_monitor_sge(),
crew_options_sge()

crew_class_monitor_slurm

[Experimental] SLURM monitor class

Description

SLURM monitor R6 class

Details

See crew_monitor_slurm().

Super class

crew.cluster::crew_class_monitor_cluster -> crew_class_monitor_slurm

crew_controller_lsf 11

Methods

Public methods:

• crew_class_monitor_slurm$jobs()

• crew_class_monitor_slurm$terminate()

Method jobs(): List SLURM jobs.

Usage:

crew_class_monitor_slurm$jobs(user = ps::ps_username())

Arguments:

user Character of length 1, user name of the jobs to list.

Details: This function loads the entire SLURM queue for all users, so it may take several
seconds to execute. It is intended for interactive use, and should especially be avoided in scripts
where it is called frequently. It requires SLURM version 20.02 or higher, along with the YAML
plugin.

Returns: A tibble with one row per SLURM job and columns with specific details.

Method terminate(): Terminate one or more SLURM jobs.

Usage:

crew_class_monitor_slurm$terminate(jobs = NULL, all = FALSE)

Arguments:

jobs Character vector of job names or job IDs to terminate. Ignored if all is set to TRUE.
all Logical of length 1, whether to terminate all the jobs under your user name. This terminates

ALL your SLURM jobs, regardless of whether crew.cluster launched them, so use with
caution!

Returns: NULL (invisibly).

See Also

Other slurm: crew_class_launcher_slurm, crew_controller_slurm(), crew_launcher_slurm(),
crew_monitor_slurm(), crew_options_slurm()

crew_controller_lsf [Experimental] Create a controller with a LSF launcher.

Description

Create an R6 object to submit tasks and launch workers on LSF workers.

12 crew_controller_lsf

Usage

crew_controller_lsf(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
serialization = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
seconds_exit = NULL,
retry_tasks = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
r_arguments = c("--no-save", "--no-restore"),
crashes_max = 5L,
backup = NULL,
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_lsf(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
lsf_cwd = NULL,
lsf_log_output = NULL,
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = NULL,
lsf_memory_gigabytes_required = NULL,
lsf_cores = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding

crew_controller_lsf 13

task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port
is automatically chosen. Controllers running simultaneously on the same com-
puter (as in a controller group) must not share the same TCP port.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

serialization Either NULL (default) or an object produced by mirai::serial_config() to
control the serialization of data sent to workers. This can help with either more
efficient data transfers or to preserve attributes of otherwise non-exportable ob-
jects (such as torch tensors or arrow tables). See ?mirai::serial_config for
details.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

retry_tasks Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

14 crew_controller_lsf

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

crashes_max In rare cases, a worker may exit unexpectedly before it completes its current
task. If this happens, pop() returns a status of "crash" instead of "error" for
the task. The controller does not automatically retry the task, but you can retry
it manually by calling push() again and using the same task name as before.
(However, targets pipelines running crew do automatically retry tasks whose
workers crashed.)
crashes_max is a non-negative integer, and it sets the maximum number of
allowable consecutive crashes for a given task. If a task’s worker crashes more
than crashes_max times in a row, then pop() throws an error when it tries to
return the results of the task.

backup An optional crew controller object, or NULL to omit. If supplied, the backup
controller runs any pushed tasks that have already reached crashes_max con-
secutive crashes. Using backup, you can create a chain of controllers with dif-
ferent levels of resources (such as worker memory and CPUs) so that a task that
fails on one controller can retry using incrementally more powerful workers.
All controllers in a backup chain should be part of the same controller group
(see crew_controller_group()) so you can call the group-level pop() and
collect() methods to make sure you get results regardless of which controller
actually ended up running the task.
Limitations of backup: * crashes_max needs to be positive in order for backup
to be used. Otherwise, every task would always skip the current controller and
go to backup. * backup cannot be a controller group. It must be an ordinary
controller.

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_lsf() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

crew_controller_lsf 15

command_submit Deprecated. Use options_cluster instead.
command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

lsf_cwd Deprecated. Use options_cluster instead.

lsf_log_output Deprecated. Use options_cluster instead.

lsf_log_error Deprecated. Use options_cluster instead.
lsf_memory_gigabytes_limit

Deprecated. Use options_cluster instead.
lsf_memory_gigabytes_required

Deprecated. Use options_cluster instead.

lsf_cores Deprecated. Use options_cluster instead.

Details

WARNING: the crew.cluster LSF plugin is experimental and has not actually been tested on
a LSF cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other lsf: crew_class_launcher_lsf, crew_launcher_lsf(), crew_options_lsf()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_lsf()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

16 crew_controller_pbs

crew_controller_pbs [Experimental] Create a controller with a PBS/TORQUE launcher.

Description

Create an R6 object to submit tasks and launch workers on a PBS or TORQUE cluster.

Usage

crew_controller_pbs(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
serialization = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
seconds_exit = NULL,
retry_tasks = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
r_arguments = c("--no-save", "--no-restore"),
crashes_max = 5L,
backup = NULL,
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_pbs(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
pbs_cwd = NULL,
pbs_log_output = NULL,
pbs_log_error = NULL,
pbs_log_join = NULL,

crew_controller_pbs 17

pbs_memory_gigabytes_required = NULL,
pbs_cores = NULL,
pbs_walltime_hours = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port
is automatically chosen. Controllers running simultaneously on the same com-
puter (as in a controller group) must not share the same TCP port.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

serialization Either NULL (default) or an object produced by mirai::serial_config() to
control the serialization of data sent to workers. This can help with either more
efficient data transfers or to preserve attributes of otherwise non-exportable ob-
jects (such as torch tensors or arrow tables). See ?mirai::serial_config for
details.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

18 crew_controller_pbs

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

retry_tasks Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

crashes_max In rare cases, a worker may exit unexpectedly before it completes its current
task. If this happens, pop() returns a status of "crash" instead of "error" for
the task. The controller does not automatically retry the task, but you can retry
it manually by calling push() again and using the same task name as before.
(However, targets pipelines running crew do automatically retry tasks whose
workers crashed.)
crashes_max is a non-negative integer, and it sets the maximum number of
allowable consecutive crashes for a given task. If a task’s worker crashes more
than crashes_max times in a row, then pop() throws an error when it tries to
return the results of the task.

backup An optional crew controller object, or NULL to omit. If supplied, the backup
controller runs any pushed tasks that have already reached crashes_max con-
secutive crashes. Using backup, you can create a chain of controllers with dif-
ferent levels of resources (such as worker memory and CPUs) so that a task that
fails on one controller can retry using incrementally more powerful workers.
All controllers in a backup chain should be part of the same controller group
(see crew_controller_group()) so you can call the group-level pop() and
collect() methods to make sure you get results regardless of which controller
actually ended up running the task.
Limitations of backup: * crashes_max needs to be positive in order for backup
to be used. Otherwise, every task would always skip the current controller and

crew_controller_pbs 19

go to backup. * backup cannot be a controller group. It must be an ordinary
controller.

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_pbs() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.

command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

pbs_cwd Deprecated. Use options_cluster instead.

pbs_log_output Deprecated. Use options_cluster instead.

pbs_log_error Deprecated. Use options_cluster instead.

pbs_log_join Deprecated. Use options_cluster instead.

pbs_memory_gigabytes_required

Deprecated. Use options_cluster instead.

pbs_cores Deprecated. Use options_cluster instead.

pbs_walltime_hours

Deprecated. Use options_cluster instead.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other pbs: crew_class_launcher_pbs, crew_launcher_pbs(), crew_options_pbs()

https://github.com/mschubert/clustermq/tree/master/inst

20 crew_controller_sge

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_pbs()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_controller_sge [Maturing] Create a controller with a Sun Grid Engine (SGE)
launcher.

Description

Create an R6 object to submit tasks and launch workers on Sun Grid Engine (SGE) workers.

Usage

crew_controller_sge(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
serialization = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
seconds_exit = NULL,
retry_tasks = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
r_arguments = c("--no-save", "--no-restore"),
crashes_max = 5L,
backup = NULL,
options_metrics = crew::crew_options_metrics(),

crew_controller_sge 21

options_cluster = crew.cluster::crew_options_sge(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
sge_cwd = NULL,
sge_envvars = NULL,
sge_log_output = NULL,
sge_log_error = NULL,
sge_log_join = NULL,
sge_memory_gigabytes_limit = NULL,
sge_memory_gigabytes_required = NULL,
sge_cores = NULL,
sge_gpu = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port
is automatically chosen. Controllers running simultaneously on the same com-
puter (as in a controller group) must not share the same TCP port.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

serialization Either NULL (default) or an object produced by mirai::serial_config() to
control the serialization of data sent to workers. This can help with either more
efficient data transfers or to preserve attributes of otherwise non-exportable ob-
jects (such as torch tensors or arrow tables). See ?mirai::serial_config for
details.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

22 crew_controller_sge

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

retry_tasks Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

crashes_max In rare cases, a worker may exit unexpectedly before it completes its current
task. If this happens, pop() returns a status of "crash" instead of "error" for
the task. The controller does not automatically retry the task, but you can retry
it manually by calling push() again and using the same task name as before.
(However, targets pipelines running crew do automatically retry tasks whose
workers crashed.)
crashes_max is a non-negative integer, and it sets the maximum number of
allowable consecutive crashes for a given task. If a task’s worker crashes more

crew_controller_sge 23

than crashes_max times in a row, then pop() throws an error when it tries to
return the results of the task.

backup An optional crew controller object, or NULL to omit. If supplied, the backup
controller runs any pushed tasks that have already reached crashes_max con-
secutive crashes. Using backup, you can create a chain of controllers with dif-
ferent levels of resources (such as worker memory and CPUs) so that a task that
fails on one controller can retry using incrementally more powerful workers.
All controllers in a backup chain should be part of the same controller group
(see crew_controller_group()) so you can call the group-level pop() and
collect() methods to make sure you get results regardless of which controller
actually ended up running the task.
Limitations of backup: * crashes_max needs to be positive in order for backup
to be used. Otherwise, every task would always skip the current controller and
go to backup. * backup cannot be a controller group. It must be an ordinary
controller.

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_sge() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.
command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

sge_cwd Deprecated. Use options_cluster instead.

sge_envvars Deprecated. Use options_cluster instead.

sge_log_output Deprecated. Use options_cluster instead.

sge_log_error Deprecated. Use options_cluster instead.

sge_log_join Deprecated. Use options_cluster instead.
sge_memory_gigabytes_limit

Deprecated. Use options_cluster instead.
sge_memory_gigabytes_required

Deprecated. Use options_cluster instead.

sge_cores Deprecated. Use options_cluster instead.

sge_gpu Deprecated. Use options_cluster instead.

24 crew_controller_slurm

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_launcher_sge(), crew_monitor_sge(),
crew_options_sge()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_sge()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_controller_slurm [Experimental] Create a controller with a SLURM launcher.

Description

Create an R6 object to submit tasks and launch workers on SLURM workers.

Usage

crew_controller_slurm(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
serialization = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
seconds_exit = NULL,

https://github.com/mschubert/clustermq/tree/master/inst

crew_controller_slurm 25

retry_tasks = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
r_arguments = c("--no-save", "--no-restore"),
crashes_max = 5L,
backup = NULL,
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_slurm(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
slurm_log_output = NULL,
slurm_log_error = NULL,
slurm_memory_gigabytes_required = NULL,
slurm_memory_gigabytes_per_cpu = NULL,
slurm_cpus_per_task = NULL,
slurm_time_minutes = NULL,
slurm_partition = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port
is automatically chosen. Controllers running simultaneously on the same com-
puter (as in a controller group) must not share the same TCP port.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

26 crew_controller_slurm

serialization Either NULL (default) or an object produced by mirai::serial_config() to
control the serialization of data sent to workers. This can help with either more
efficient data transfers or to preserve attributes of otherwise non-exportable ob-
jects (such as torch tensors or arrow tables). See ?mirai::serial_config for
details.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.
retry_tasks Deprecated on 2025-01-13 (crew version 0.10.2.9002).
tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks

argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.
crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).
r_arguments Optional character vector of command line arguments to pass to Rscript (non-

Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

crew_controller_slurm 27

crashes_max In rare cases, a worker may exit unexpectedly before it completes its current
task. If this happens, pop() returns a status of "crash" instead of "error" for
the task. The controller does not automatically retry the task, but you can retry
it manually by calling push() again and using the same task name as before.
(However, targets pipelines running crew do automatically retry tasks whose
workers crashed.)
crashes_max is a non-negative integer, and it sets the maximum number of
allowable consecutive crashes for a given task. If a task’s worker crashes more
than crashes_max times in a row, then pop() throws an error when it tries to
return the results of the task.

backup An optional crew controller object, or NULL to omit. If supplied, the backup
controller runs any pushed tasks that have already reached crashes_max con-
secutive crashes. Using backup, you can create a chain of controllers with dif-
ferent levels of resources (such as worker memory and CPUs) so that a task that
fails on one controller can retry using incrementally more powerful workers.
All controllers in a backup chain should be part of the same controller group
(see crew_controller_group()) so you can call the group-level pop() and
collect() methods to make sure you get results regardless of which controller
actually ended up running the task.
Limitations of backup: * crashes_max needs to be positive in order for backup
to be used. Otherwise, every task would always skip the current controller and
go to backup. * backup cannot be a controller group. It must be an ordinary
controller.

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_slurm() with cluster-specific configura-
tion options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.
command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.
slurm_log_output

Deprecated. Use options_cluster instead.
slurm_log_error

Deprecated. Use options_cluster instead.
slurm_memory_gigabytes_required

Deprecated. Use options_cluster instead.

28 crew_launcher_lsf

slurm_memory_gigabytes_per_cpu

Deprecated. Use options_cluster instead.
slurm_cpus_per_task

Deprecated. Use options_cluster instead.
slurm_time_minutes

Deprecated. Use options_cluster instead.
slurm_partition

Deprecated. Use options_cluster instead.

Details

WARNING: the crew.cluster SLURM plugin is experimental and has not actually been tested on
a SLURM cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_launcher_slurm(),
crew_monitor_slurm(), crew_options_slurm()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_slurm()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_launcher_lsf [Experimental] Create a launcher with LSF workers.

Description

Create an R6 object to launch and maintain workers as LSF jobs.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

crew_launcher_lsf 29

Usage

crew_launcher_lsf(
name = NULL,
workers = 1L,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
tls = crew::crew_tls(mode = "automatic"),
r_arguments = c("--no-save", "--no-restore"),
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_lsf(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
lsf_cwd = NULL,
lsf_log_output = NULL,
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = NULL,
lsf_memory_gigabytes_required = NULL,
lsf_cores = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

30 crew_launcher_lsf

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tls A TLS configuration object from crew_tls().

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_lsf() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

crew_launcher_lsf 31

command_submit Deprecated. Use options_cluster instead.

command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

lsf_cwd Deprecated. Use options_cluster instead.

lsf_log_output Deprecated. Use options_cluster instead.

lsf_log_error Deprecated. Use options_cluster instead.

lsf_memory_gigabytes_limit

Deprecated. Use options_cluster instead.

lsf_memory_gigabytes_required

Deprecated. Use options_cluster instead.

lsf_cores Deprecated. Use options_cluster instead.

Details

WARNING: the crew.cluster LSF plugin is experimental. Please proceed with caution and report
bugs to https://github.com/wlandau/crew.cluster.

To launch a LSF worker, this launcher creates a temporary job script with a call to crew::crew_worker()
and submits it as an LSF job with sbatch. To see most of the lines of the job script in advance, use
the script() method of the launcher. It has all the lines except for the job name and the call to
crew::crew_worker(), both of which will be inserted at the last minute when it is time to actually
launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other lsf: crew_class_launcher_lsf, crew_controller_lsf(), crew_options_lsf()

https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

32 crew_launcher_pbs

crew_launcher_pbs [Experimental] Create a launcher with PBS or TORQUE workers.

Description

Create an R6 object to launch and maintain workers as jobs on a PBS or TORQUE cluster.

Usage

crew_launcher_pbs(
name = NULL,
workers = 1L,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
tls = crew::crew_tls(mode = "automatic"),
r_arguments = c("--no-save", "--no-restore"),
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_pbs(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
pbs_cwd = NULL,
pbs_log_output = NULL,
pbs_log_error = NULL,
pbs_log_join = NULL,
pbs_memory_gigabytes_required = NULL,
pbs_cores = NULL,
pbs_walltime_hours = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

crew_launcher_pbs 33

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.
crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).
tls A TLS configuration object from crew_tls().
r_arguments Optional character vector of command line arguments to pass to Rscript (non-

Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

34 crew_launcher_pbs

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_pbs() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.
command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

pbs_cwd Deprecated. Use options_cluster instead.

pbs_log_output Deprecated. Use options_cluster instead.

pbs_log_error Deprecated. Use options_cluster instead.

pbs_log_join Deprecated. Use options_cluster instead.
pbs_memory_gigabytes_required

Deprecated. Use options_cluster instead.

pbs_cores Deprecated. Use options_cluster instead.
pbs_walltime_hours

Deprecated. Use options_cluster instead.

Details

WARNING: the crew.cluster PBS plugin is experimental and has not actually been tested on
a PBS cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

To launch a PBS/TORQUE worker, this launcher creates a temporary job script with a call to
crew::crew_worker() and submits it as an PBS job with qsub. To see most of the lines of the
job script in advance, use the script() method of the launcher. It has all the lines except for the
job name and the call to crew::crew_worker(), both of which will be inserted at the last minute
when it is time to actually launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

crew_launcher_sge 35

See Also

Other pbs: crew_class_launcher_pbs, crew_controller_pbs(), crew_options_pbs()

crew_launcher_sge [Maturing] Create a launcher with Sun Grid Engine (SGE) workers.

Description

Create an R6 object to launch and maintain workers as Sun Grid Engine (SGE) jobs.

Usage

crew_launcher_sge(
name = NULL,
workers = 1L,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
tls = crew::crew_tls(mode = "automatic"),
r_arguments = c("--no-save", "--no-restore"),
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_sge(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
sge_cwd = NULL,
sge_envvars = NULL,
sge_log_output = NULL,
sge_log_error = NULL,
sge_log_join = NULL,
sge_memory_gigabytes_limit = NULL,
sge_memory_gigabytes_required = NULL,
sge_cores = NULL,
sge_gpu = NULL

)

36 crew_launcher_sge

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

crew_launcher_sge 37

tls A TLS configuration object from crew_tls().

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_sge() with cluster-specific configuration
options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.

command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

sge_cwd Deprecated. Use options_cluster instead.

sge_envvars Deprecated. Use options_cluster instead.

sge_log_output Deprecated. Use options_cluster instead.

sge_log_error Deprecated. Use options_cluster instead.

sge_log_join Deprecated. Use options_cluster instead.

sge_memory_gigabytes_limit

Deprecated. Use options_cluster instead.

sge_memory_gigabytes_required

Deprecated. Use options_cluster instead.

sge_cores Deprecated. Use options_cluster instead.

sge_gpu Deprecated. Use options_cluster instead.

Details

To launch a Sun Grid Engine (SGE) worker, this launcher creates a temporary job script with a call
to crew::crew_worker() and submits it as an SGE job with qsub. To see most of the lines of the
job script in advance, use the script() method of the launcher. It has all the lines except for the
job name and the call to crew::crew_worker(), both of which will be inserted at the last minute
when it is time to actually launch a worker.

38 crew_launcher_slurm

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_controller_sge(),
crew_monitor_sge(), crew_options_sge()

crew_launcher_slurm [Experimental] Create a launcher with SLURM workers.

Description

Create an R6 object to launch and maintain workers as SLURM jobs.

Usage

crew_launcher_slurm(
name = NULL,
workers = 1L,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = 300,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
crashes_error = NULL,
tls = crew::crew_tls(mode = "automatic"),
r_arguments = c("--no-save", "--no-restore"),
options_metrics = crew::crew_options_metrics(),
options_cluster = crew.cluster::crew_options_slurm(),
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
command_delete = NULL,
script_directory = NULL,
script_lines = NULL,
slurm_log_output = NULL,

https://github.com/mschubert/clustermq/tree/master/inst

crew_launcher_slurm 39

slurm_log_error = NULL,
slurm_memory_gigabytes_required = NULL,
slurm_memory_gigabytes_per_cpu = NULL,
slurm_cpus_per_task = NULL,
slurm_time_minutes = NULL,
slurm_partition = NULL

)

Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

40 crew_launcher_slurm

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tls A TLS configuration object from crew_tls().

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
= c("--vanilla", "--max-connections=32").

options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_cluster

An options list from crew_options_slurm() with cluster-specific configura-
tion options.

verbose Deprecated. Use options_cluster instead.

command_submit Deprecated. Use options_cluster instead.

command_terminate

Deprecated. Use options_cluster instead.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Deprecated. Use options_cluster instead.

script_lines Deprecated. Use options_cluster instead.

slurm_log_output

Deprecated. Use options_cluster instead.

slurm_log_error

Deprecated. Use options_cluster instead.

slurm_memory_gigabytes_required

Deprecated. Use options_cluster instead.

slurm_memory_gigabytes_per_cpu

Deprecated. Use options_cluster instead.

slurm_cpus_per_task

Deprecated. Use options_cluster instead.

slurm_time_minutes

Deprecated. Use options_cluster instead.

slurm_partition

Deprecated. Use options_cluster instead.

crew_monitor_sge 41

Details

WARNING: the crew.cluster SLURM plugin is experimental and has not actually been tested on
a SLURM cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

To launch a SLURM worker, this launcher creates a temporary job script with a call to crew::crew_worker()
and submits it as an SLURM job with sbatch. To see most of the lines of the job script in advance,
use the script() method of the launcher. It has all the lines except for the job name and the call to
crew::crew_worker(), both of which will be inserted at the last minute when it is time to actually
launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_controller_slurm(),
crew_monitor_slurm(), crew_options_slurm()

crew_monitor_sge [Experimental] Create a SGE monitor object.

Description

Create an R6 object to monitor SGE cluster jobs.

Usage

crew_monitor_sge(
verbose = TRUE,
command_list = as.character(Sys.which("qstat")),
command_terminate = as.character(Sys.which("qdel"))

)

Arguments

verbose Deprecated. Use options_cluster instead.

command_list Character of length 1, file path to the executable to list jobs.
command_terminate

Deprecated. Use options_cluster instead.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

42 crew_options_lsf

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_controller_sge(),
crew_launcher_sge(), crew_options_sge()

crew_monitor_slurm [Experimental] Create a SLURM monitor object.

Description

Create an R6 object to monitor SLURM cluster jobs.

Usage

crew_monitor_slurm(
verbose = TRUE,
command_list = as.character(Sys.which("squeue")),
command_terminate = as.character(Sys.which("scancel"))

)

Arguments

verbose Deprecated. Use options_cluster instead.

command_list Character of length 1, file path to the executable to list jobs.

command_terminate

Deprecated. Use options_cluster instead.

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_controller_slurm(),
crew_launcher_slurm(), crew_options_slurm()

crew_options_lsf [Experimental] LSF options.

Description

Set options for LSF job management.

crew_options_lsf 43

Usage

crew_options_lsf(
verbose = FALSE,
command_submit = as.character(Sys.which("bsub")),
command_terminate = as.character(Sys.which("bkill")),
script_directory = tempdir(),
script_lines = character(0L),
cwd = getwd(),
log_output = "/dev/null",
log_error = "/dev/null",
memory_gigabytes_limit = NULL,
memory_gigabytes_required = NULL,
cores = NULL

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

cwd Character of length 1, directory to launch the worker from (as opposed to the
system default). cwd = "/home" translates to a line of #BSUB -cwd /home in the
LSF job script. cwd = getwd() is the default, which launches workers from the
current working directory. Set cwd = NULL to omit this line from the job script.

log_output Character of length 1, file pattern to control the locations of the LSF worker
log files. By default, both standard output and standard error go to the same file.
log_output = "crew_log_%J.log" translates to a line of #BSUB -o crew_log_%J.log
in the LSF job script, where %J is replaced by the job ID of the worker. The de-
fault is /dev/null to omit these logs. Set log_output = NULL to omit this line
from the job script.

44 crew_options_pbs

log_error Character of length 1, file pattern for standard error. log_error = "crew_error_%J.err"
translates to a line of #BSUB -e crew_error_%J.err in the LSF job script,
where %J is replaced by the job ID of the worker. The default is /dev/null to
omit these logs. Set log_error = NULL to omit this line from the job script.

memory_gigabytes_limit

Positive numeric scalar, memory limit in gigabytes of the worker. memory_gigabytes_limit
= 4 translates to a line of #BSUB -M 4G in the LSF job script. memory_gigabytes_limit
= NULL omits this line.

memory_gigabytes_required

Positive numeric scalar, memory requirement in gigabytes. memory_gigabytes_required
= 4 translates to a line of #BSUB -R 'rusage[mem=4G]' in the LSF job script.
memory_gigabytes_required = NULL omits this line.

cores Optional positive integer scalar, number of CPU cores for the worker. cores =
4 translates to a line of #BSUB -n 4 in the LSF job script. cores = NULL omits
this line.

Value

A classed list of options.

Retryable options

Retryable options are deprecated in crew.cluster as of 2025-01-27 (version 0.3.4).

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other lsf: crew_class_launcher_lsf, crew_controller_lsf(), crew_launcher_lsf()

Examples

crew_options_lsf()

crew_options_pbs [Experimental] PBS options.

Description

Set options for PBS job management.

https://github.com/mschubert/clustermq/tree/master/inst

crew_options_pbs 45

Usage

crew_options_pbs(
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
script_directory = tempdir(),
script_lines = character(0L),
cwd = TRUE,
log_output = "/dev/null",
log_error = NULL,
log_join = TRUE,
memory_gigabytes_required = NULL,
cores = NULL,
walltime_hours = 12

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

cwd Logical of length 1, whether to set the working directory of the worker to the
working directory it was launched from. cwd = TRUE is translates to a line of
cd "$O_WORKDIR" in the job script. This line is inserted after the content of
script_lines to make sure the #PBS directives are above system commands.
cwd = FALSE omits this line.

log_output Character of length 1, file or directory path to PBS worker log files for standard
output. log_output = "VALUE" translates to a line of #PBS -o VALUE in the
PBS job script. The default is /dev/null to omit the logs. If you do supply

46 crew_options_pbs

a non-/dev/null value, it is recommended to supply a directory path with a
trailing slash so that each worker gets its own set of log files.

log_error Character of length 1, file or directory path to PBS worker log files for standard
error. log_error = "VALUE" translates to a line of #PBS -e VALUE in the PBS
job script. The default of NULL omits this line. If you do supply a non-/dev/null
value, it is recommended to supply a directory path with a trailing slash so that
each worker gets its own set of log files.

log_join Logical, whether to join the stdout and stderr log files together into one file.
log_join = TRUE translates to a line of #PBS -j oe in the PBS job script,
while log_join = FALSE is equivalent to #PBS -j n. If log_join = TRUE, then
log_error should be NULL.

memory_gigabytes_required

Optional positive numeric scalar, gigabytes of memory required to run the worker.
memory_gigabytes_required = 2.4 translates to a line of #PBS -l mem=2.4gb
in the PBS job script. memory_gigabytes_required = NULL omits this line.

cores Optional positive integer scalar, number of cores for the worker ("slots" in PBS
lingo). cores = 4 translates to a line of #PBS -l ppn=4 in the PBS job script.
cores = NULL omits this line.

walltime_hours Numeric scalar, hours of wall time to request for the worker. walltime_hours
= 23 translates to a line of #PBS -l walltime=23:00:00 in the job script.
walltime_hours = NULL omits this line.

Value

A classed list of options.

Retryable options

Retryable options are deprecated in crew.cluster as of 2025-01-27 (version 0.3.4).

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other pbs: crew_class_launcher_pbs, crew_controller_pbs(), crew_launcher_pbs()

Examples

crew_options_pbs()

https://github.com/mschubert/clustermq/tree/master/inst

crew_options_sge 47

crew_options_sge [Maturing] SGE options.

Description

Set options for SGE job management.

Usage

crew_options_sge(
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
script_directory = tempdir(),
script_lines = character(0L),
cwd = TRUE,
envvars = FALSE,
log_output = "/dev/null",
log_error = NULL,
log_join = TRUE,
memory_gigabytes_limit = NULL,
memory_gigabytes_required = NULL,
cores = NULL,
gpu = NULL

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

48 crew_options_sge

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

cwd Logical of length 1, whether to launch the worker from the current working
directory (as opposed to the user home directory). cwd = TRUE translates to a
line of #$ -cwd in the SGE job script. cwd = FALSE omits this line.

envvars Logical of length 1, whether to forward the environment variables of the current
session to the SGE worker. envvars = TRUE translates to a line of #$ -V in the
SGE job script. envvars = FALSE omits this line.

log_output Character of length 1, file or directory path to SGE worker log files for standard
output. log_output = "VALUE" translates to a line of #$ -o VALUE in the SGE
job script. The default is /dev/null to omit the logs. If you do supply a non-
/dev/null value, it is recommended to supply a directory path with a trailing
slash so that each worker gets its own set of log files.

log_error Character of length 1, file or directory path to SGE worker log files for standard
error. log_error = "VALUE" translates to a line of #$ -e VALUE in the SGE job
script. The default of NULL omits this line. If you do supply a non-/dev/null
value, it is recommended to supply a directory path with a trailing slash so that
each worker gets its own set of log files.

log_join Logical, whether to join the stdout and stderr log files together into one file.
log_join = TRUE translates to a line of #$ -j y in the SGE job script, while
log_join = FALSE is equivalent to #$ -j n. If log_join = TRUE, then log_error
should be NULL.

memory_gigabytes_limit

Optional numeric scalar, maximum number of gigabytes of memory a worker is
allowed to consume. If the worker consumes more than this level of memory,
then SGE will terminate it. memory_gigabytes_limit = 5.7" translates to a
line of "#$ -l h_rss=5.7G" in the SGE job script. memory_gigabytes_limit
= NULL omits this line.

memory_gigabytes_required

Optional positive numeric scalar, gigabytes of memory required to run the worker.
memory_gigabytes_required = 2.4 translates to a line of #$ -l m_mem_free=2.4G
in the SGE job script. memory_gigabytes_required = NULL omits this line.

cores Optional positive integer scalar, number of cores per worker ("slots" in SGE
lingo). cores = 4 translates to a line of #$ -pe smp 4 in the SGE job script.
cores = NULL omits this line.

gpu Optional integer scalar, number of GPUs to request for the worker. gpu = 1
translates to a line of "#$ -l gpu=1" in the SGE job script. gpu = NULL omits
this line.

Value

A classed list of options.

Retryable options

Retryable options are deprecated in crew.cluster as of 2025-01-27 (version 0.3.4).

crew_options_slurm 49

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_controller_sge(),
crew_launcher_sge(), crew_monitor_sge()

Examples

crew_options_sge()

crew_options_slurm [Experimental] SLURM options.

Description

Set options for SLURM job management.

Usage

crew_options_slurm(
verbose = FALSE,
command_submit = as.character(Sys.which("sbatch")),
command_terminate = as.character(Sys.which("scancel")),
script_directory = tempdir(),
script_lines = character(0L),
log_output = "/dev/null",
log_error = "/dev/null",
memory_gigabytes_required = NULL,
memory_gigabytes_per_cpu = NULL,
cpus_per_task = NULL,
time_minutes = NULL,
partition = NULL,
n_tasks = 1

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.

https://github.com/mschubert/clustermq/tree/master/inst

50 crew_options_slurm

command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

log_output Character of length 1, file pattern to control the locations of the SLURM worker
log files. By default, both standard output and standard error go to the same file.
log_output = "crew_log_%A.txt" translates to a line of #SBATCH --output=crew_log_%A.txt
in the SLURM job script, where %A is replaced by the job ID of the worker. The
default is /dev/null to omit these logs. Set log_output = NULL to omit this
line from the job script.

log_error Character of length 1, file pattern for standard error. log_error = "crew_log_%A.txt"
translates to a line of #SBATCH --error=crew_log_%A.txt in the SLURM
job script, where %A is replaced by the job ID of the worker. The default is
/dev/null to omit these logs. Set log_error = NULL to omit this line from the
job script.

memory_gigabytes_required

Positive numeric scalar, total number of gigabytes of memory required per node.
memory_gigabytes_required = 2.40123 translates to a line of #SBATCH --mem=2041M
in the SLURM job script. memory_gigabytes_required = NULL omits this line.

memory_gigabytes_per_cpu

Positive numeric scalar, gigabytes of memory required per CPU. memory_gigabytes_per_cpu
= 2.40123 translates to a line of #SBATCH --mem-per-cpu=2041M in the SLURM
job script. memory_gigabytes_per_cpu = NULL omits this line.

cpus_per_task Optional positive integer scalar, number of CPUs for the worker. cpus_per_task
= 4 translates to a line of #SBATCH --cpus-per-task=4 in the SLURM job
script. cpus_per_task = NULL omits this line.

time_minutes Numeric scalar, number of minutes to designate as the wall time of crew each
worker instance on the SLURM cluster. time_minutes = 60 translates to a line
of #SBATCH --time=60 in the SLURM job script. time_minutes = NULL omits
this line.

partition Character string, name of the SLURM partition to create workers on. partition
= "partition1,partition2" translates to a line of #SBATCH --partition=partition1,partition2
in the SLURM job script. partition = NULL omits this line.

crew_options_slurm 51

n_tasks Numeric scalar, number of SLURM tasks to run within the job. n_tasks = 1
translates to a line of #SBATCH --ntasks=1 in the SLURM job script. n_tasks
= 0 omits this line.

Value

A classed list of options.

Retryable options

Retryable options are deprecated in crew.cluster as of 2025-01-27 (version 0.3.4).

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_controller_slurm(),
crew_launcher_slurm(), crew_monitor_slurm()

Examples

crew_options_slurm()

https://github.com/mschubert/clustermq/tree/master/inst

Index

∗ help
crew.cluster-package, 2

∗ lsf
crew_class_launcher_lsf, 3
crew_controller_lsf, 11
crew_launcher_lsf, 28
crew_options_lsf, 42

∗ pbs
crew_class_launcher_pbs, 4
crew_controller_pbs, 16
crew_launcher_pbs, 32
crew_options_pbs, 44

∗ sge
crew_class_launcher_sge, 6
crew_class_monitor_sge, 9
crew_controller_sge, 20
crew_launcher_sge, 35
crew_monitor_sge, 41
crew_options_sge, 47

∗ slurm
crew_class_launcher_slurm, 8
crew_class_monitor_slurm, 10
crew_controller_slurm, 24
crew_launcher_slurm, 38
crew_monitor_slurm, 42
crew_options_slurm, 49

crew.cluster-package, 2
crew.cluster::crew_class_launcher_cluster,

3, 5, 6, 8
crew.cluster::crew_class_monitor_cluster,

9, 10
crew::crew_class_launcher, 3, 5, 6, 8
crew_class_launcher_lsf, 3, 15, 31, 44
crew_class_launcher_pbs, 4, 19, 35, 46
crew_class_launcher_sge, 6, 10, 24, 38, 42,

49
crew_class_launcher_slurm, 8, 11, 28, 41,

42, 51
crew_class_monitor_sge, 7, 9, 24, 38, 42, 49

crew_class_monitor_slurm, 9, 10, 28, 41,
42, 51

crew_controller_group(), 14, 18, 23, 27
crew_controller_lsf, 4, 11, 31, 44
crew_controller_pbs, 6, 16, 35, 46
crew_controller_sge, 7, 10, 20, 38, 42, 49
crew_controller_slurm, 9, 11, 24, 41, 42, 51
crew_launcher_lsf, 4, 15, 28, 44
crew_launcher_lsf(), 3
crew_launcher_pbs, 6, 19, 32, 46
crew_launcher_pbs(), 5
crew_launcher_sge, 7, 10, 24, 35, 42, 49
crew_launcher_sge(), 6
crew_launcher_slurm, 9, 11, 28, 38, 42, 51
crew_launcher_slurm(), 8
crew_monitor_sge, 7, 10, 24, 38, 41, 49
crew_monitor_sge(), 9
crew_monitor_slurm, 9, 11, 28, 41, 42, 51
crew_monitor_slurm(), 10
crew_options_lsf, 4, 15, 31, 42
crew_options_lsf(), 14, 30
crew_options_metrics(), 14, 19, 23, 27, 30,

34, 37, 40
crew_options_pbs, 6, 19, 35, 44
crew_options_pbs(), 19, 34
crew_options_sge, 7, 10, 24, 38, 42, 47
crew_options_sge(), 23, 37
crew_options_slurm, 9, 11, 28, 41, 42, 49
crew_options_slurm(), 27, 40
crew_throttle(), 13, 17, 21, 26, 29, 33, 36,

39
crew_tls(), 13, 17, 21, 25, 30, 33, 37, 40

mirai::serial_config(), 13, 17, 21, 26

52

	crew.cluster-package
	crew_class_launcher_lsf
	crew_class_launcher_pbs
	crew_class_launcher_sge
	crew_class_launcher_slurm
	crew_class_monitor_sge
	crew_class_monitor_slurm
	crew_controller_lsf
	crew_controller_pbs
	crew_controller_sge
	crew_controller_slurm
	crew_launcher_lsf
	crew_launcher_pbs
	crew_launcher_sge
	crew_launcher_slurm
	crew_monitor_sge
	crew_monitor_slurm
	crew_options_lsf
	crew_options_pbs
	crew_options_sge
	crew_options_slurm
	Index

