Package 'fixes'

May 10, 2025

Type Package

Title Tools for Creating and Visualizing Fixed-Effects Event Study Models

Version 0.2.1

Description

Provides functions for creating, analyzing, and visualizing event study models using fixed-effects regression.

Depends R (>= 4.1.0)

Imports dplyr, ggplot2, fixest, broom, tibble, rlang

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Yosuke Abe [aut, cre]

Maintainer Yosuke Abe <yosuke.abe0507@gmail.com>

Repository CRAN

Date/Publication 2025-05-10 18:30:05 UTC

Contents

plot_es	 	2
run_es	 	4

8

Index

plot_es

Description

This function creates a plot for event study results using 'ggplot2'. Users can choose between ribbon-style confidence intervals or error bars to visualize the estimates and their uncertainty.

Usage

```
plot_es(
    data,
    type = "ribbon",
    vline_val = 0,
    vline_color = "#000",
    hline_val = 0,
    hline_color = "#000",
    linewidth = 1,
    pointsize = 2,
    alpha = 0.2,
    barwidth = 0.2,
    color = "#B25D91FF",
    fill = "#B25D91FF"
```

Arguments

data	A dataframe containing the results from the 'run_es' function. The dataframe must include the following columns: - 'relative_time': The scaled time relative to the treatment 'estimate': The estimated coefficients 'conf_low': The lower bound of the 95 - 'conf_high': The upper bound of the 95 - 'std.error': The standard errors (required if 'type = "errorbar"').
type	The type of confidence interval visualization: "ribbon" (default) or "errorbar" "ribbon": Shaded area representing the confidence intervals "errorbar": Verti- cal error bars for each estimate.
vline_val	The x-intercept for the vertical reference line (default: 0). Typically represents the time of treatment.
vline_color	The color of the vertical reference line (default: "#000").
hline_val	The y-intercept for the horizontal reference line (default: 0). Usually represents the null effect line.
hline_color	The color of the horizontal reference line (default: "#000").
linewidth	The width of the lines in the plot (default: 1).
pointsize	The size of the points for the estimates (default: 2).
alpha	The transparency level for the ribbon (default: 0.2).

barwidth	The width of the error bars (default: 0.2).
color	The color of the lines and points (default: "#B25D91FF").
fill	The fill color for the ribbon (default: "#B25D91FF").

Details

This function provides a flexible visualization tool for event study results. Users can customize the appearance of the plot by adjusting the parameters for line styles, point sizes, colors, and confidence interval types.

Column Requirements: The input dataframe ('data') must include: - 'relative_time': A numeric column for the time relative to the treatment. - 'estimate': The estimated coefficients for each relative time. - 'conf_low' and 'conf_high': The bounds of the confidence intervals. - 'std.error': The standard errors (only required if 'type = "errorbar"').

Type Options: - '"ribbon"': A shaded area to represent the confidence intervals. - '"errorbar"': Error bars for each point. Standard errors ('std.error') are required.

Value

A ggplot object displaying the event study results. The plot includes: - A line connecting the estimates over relative time. - Points for the estimated coefficients. - Either ribbon-style confidence intervals or error bars, depending on 'type'. - Vertical and horizontal reference lines for better interpretability.

Note

If 'type = "errorbar"', ensure that the 'std.error' column is present in the input dataframe. Missing values in the 'std.error' column for any term will result in incomplete confidence intervals.

Examples

```
## Not run:
# Run event study
event_study <- run_es(</pre>
            = df,
 data
 outcome
            = y,
 treatment = is_treated,
 time
            = year,
 timing
            = 2005,
 lead_range = 5,
                              # Corresponds to years 2000-2004 (relative time: -5 to -1)
                               # Corresponds to years 2006-2009 (relative time: 1 to 4)
 lag_range = 4,
            = firm_id + year,
 fe
 cluster
            = "state_id",
 baseline = -1,
 interval = 1
)
# Basic plot
plot_es(event_study)
# Use error bars instead of ribbon confidence intervals
```

```
plot_es(event_study, type = "errorbar")
# Adjust vertical reference line
plot_es(event_study, type = "errorbar", vline_val = -0.5)
# Customize axis breaks and title
library(ggplot2)
plot_es(event_study, type = "errorbar") +
  ggplot2::scale_x_continuous(breaks = seq(-5, 4, by = 1)) +
  ggplot2::ggtitle("Result of Event Study")
### End(Not_sup)
```

End(Not run)

run_es

Run Event Study with Fixed Effects

Description

This function performs an event study using fixed effects regression based on a panel dataset. It generates dummy variables for each lead and lag period relative to the treatment timing, applies optional covariates and fixed effects, and estimates the model using 'fixest::feols'.

Usage

```
run_es(
    data,
    outcome,
    treatment,
    time,
    timing,
    lead_range,
    lag_range,
    covariates = NULL,
    fe,
    cluster = NULL,
    baseline = -1,
    interval = 1
}
```

)

Arguments

data	A data frame containing the panel dataset.
outcome	The outcome variable, specified unquoted. You may use a raw variable name (e.g., 'y') or a transformation (e.g., ' $\log(y)$ ').
treatment	The treatment indicator (unquoted). Can be binary numeric ('0/1') or logical ('TRUE/FALSE'). Typically equals 1 (or 'TRUE') in and after the treated period, 0 otherwise.

4

run_es

time	The time variable (unquoted). Used to calculate the relative timing.
timing	The time period when the treatment occurs for the treated units.
lead_range	Number of pre-treatment periods to include as leads (e.g., 5 = 'lead5', 'lead4',, 'lead1').
lag_range	Number of post-treatment periods to include as lags (e.g., $3 = 'lag0'$, 'lag1', 'lag2', 'lag3').
covariates	Optional covariates to include in the regression. Must be supplied as a one-sided formula (e.g., '~ $x1 + x2$ ').
fe	Fixed effects to control for unobserved heterogeneity. Must be a one-sided for- mula (e.g., '~ id + year').
cluster	Clustering specification for robust standard errors. Accepts either:
	 a character vector of column names (e.g., 'c("id", "year")'), or a one-sided formula (e.g., '~ id + year' or '~ id^year').
	Cluster variables are internally re-evaluated after filtering for the estimation win- dow.
baseline	The relative time (e.g., '-1') to use as the reference period. The correspond- ing dummy variable will be excluded from the regression and added manually to the results with estimate 0. Must lie within the specified 'lead_range' and 'lag_range'. If not, an error will be thrown.
interval	The interval between time periods. Use '1' for annual data (default), '5' for 5-year intervals, etc.

Details

This function is intended for difference-in-differences or event study designs with panel data. It automatically: - Computes relative time: (time - timing) / interval - Generates dummy variables for specified leads and lags - Removes the baseline term from estimation and appends it back post-estimation - Uses fixest::feols() for fast and flexible estimation

Both fixed effects and clustering are fully supported.

Value

A tibble with the event study regression results, including: - 'term': Name of the lead or lag dummy variable - 'estimate': Coefficient estimate - 'std.error': Standard error - 'statistic': t-statistic - 'p.value': p-value - 'conf_high': Upper bound of 95 - 'conf_low': Lower bound of 95 - 'relative_time': Time scaled relative to the treatment - 'is_baseline': Logical indicator for the baseline term (equals 'TRUE' only for the excluded dummy)

Examples

```
## Not run:
# Assume df is a panel dataset with variables: id, year, y, treat, x1, x2, var1, var2
# Minimal example without covariates
run_es(
    data = df,
```

run_es

```
outcome
             = y,
 treatment = treat,
 time
             = year,
 timing
             = 2005,
 lead_range = 2,
 lag_range = 2,
             = \sim id + year,
 fe
 cluster
             = ~ id,
            = -1,
 baseline
 interval
             = 1
)
# Specifying two-way clustering over var1 and var2 using a character vector:
run_es(
 data
             = df,
 outcome
             = у,
 treatment = treat,
 time
             = year,
 timing
             = 2005,
 lead_range = 2,
 lag_range = 2,
 covariates = \sim x1 + x2,
            = ~ id + year,
 fe
             = c("var1", "var2"),
 cluster
 interval = 1
)
# Specifying two-way clustering over var1 and var2 using a one-sided formula:
run_es(
             = df,
 data
 outcome
             = у,
 treatment = treat,
 time
             = year,
 timing
             = 2005,
 lead_range = 2,
 lag_range = 2,
 covariates = \sim x1 + x2,
             = \sim id + year,
 fe
             = ~ var1 + var2,
 cluster
 interval = 1
)
# Using an interaction in the clustering specification:
run_es(
 data
             = df,
 outcome
             = y,
 treatment = treat,
             = year,
 time
 timing
             = 2005,
 lead_range = 2,
 lag_range = 2,
 covariates = \sim x1 + x2,
           = ~ id + year,
 fe
```

6

run_es

```
cluster = ~ var1^var2,
interval = 1
)
## End(Not run)
```

Index

plot_es, 2

run_es,4