Package ‘kindling’

February 4, 2026

Type Package

Title Higher-Level Interface of 'torch' Package to Auto-Train Neural
Networks

Version 0.2.0

Description Provides a higher-level interface to the 'torch’ package for defining,
training, and fine-tuning neural networks, including its depth, powered by code generation.
This package currently supports few to several architectures, namely feedforward (multi-
layer perceptron)
and recurrent neural networks (Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU)),
while also reduces boilerplate 'torch' code while enabling seamless integra-
tion with 'torch'. The model methods
to train neural networks from this package also bridges to titanic ML frameworks in R, namely
'tidymodels' ecosystem, which enables the 'parsnip' model specifications, workflows, recipes,
and tuning tools.

License MIT + file LICENSE
Encoding UTF-8

Imports purrr, torch, rlang, cli, glue, vctrs, parsnip (>= 1.0.0),
tibble, tidyr, dplyr, stats, NeuralNetTools, vip, ggplot2,
tune, dials, hardhat

Suggests testthat (>= 3.0.0), magrittr, box, recipes, workflows,
rsample, yardstick, mlbench, modeldata, knitr, rmarkdown,
DiceDesign, lhs, sfd

Config/testthat/edition 3
RoxygenNote 7.3.3
Depends R (>=4.1.0)

URL https://kindling. joshuamarie.com,
https://github.com/joshuamarie/kindling

BugReports https://github.com/joshuamarie/kindling/issues
VignetteBuilder knitr

NeedsCompilation no

https://kindling.joshuamarie.com
https://github.com/joshuamarie/kindling
https://github.com/joshuamarie/kindling/issues

2 act_funs

Author Joshua Marie [aut, cre]

Maintainer Joshua Marie <joshua.marie.k@gmail.com>

Repository CRAN

Date/Publication 2026-02-04 16:00:08 UTC

Contents
act_funs L e s 2
ATES o v e e e e e e e e e e e e e 3
ffnn . .. e e 3
ffan_generator e e e e 6
fian_wrapper e e e 10
grid_depth L 11
kindling-varimp 15
mlp_kindling 17
ordinal_gen 20
mn_kindling e 21
table_summary e e e e e e 23

Index 26

act_funs Activation Functions Specification Helper
Description

This function is a DSL function, kind of like ggplot2::aes(), that helps to specify activation
functions for neural network layers. It validates that activation functions exist in torch and that any
parameters match the function’s formal arguments.

Usage

act_funs(...)

Arguments

Value

Activation function specifications. Can be:

Bare symbols: relu, tanh

Character strings (simple): "relu”, "tanh”

Character strings (with params): "softshrink(lambda=0.1)", "rrelu(lower
=1/5, upper =1/4)"

Named with parameters: softmax = args(dim=2L)

A vctrs vector with class "activation_spec" containing validated activation specifications.

args 3

args Activation Function Arguments Helper

Description
Type-safe helper to specify parameters for activation functions. All parameters must be named and
match the formal arguments of the corresponding torch activation function.

Usage

args(...)

Arguments

Named arguments for the activation function.

Value

A list with class "activation_args" containing the parameters.

ffnn Base models for Neural Network Training in kindling

Description

Base models for Neural Network Training in kindling

Usage
ffnn(
formula = NULL,
data = NULL,

hidden_neurons,
activations = NULL,
output_activation = NULL,
bias = TRUE,

epochs = 100,

batch_size = 32,

penalty = 0,

mixture = 0,

learn_rate = 0.001,

optimizer = "adam”,
optimizer_args = list(),
loss = "mse”,

validation_split = 0,
device = NULL,

4 ffnn

verbose = FALSE,
cache_weights = FALSE,

NULL,

X =
y = NULL
)
rnn(
formula = NULL,
data = NULL,

hidden_neurons,
rnn_type = "lstm",
activations = NULL,
output_activation = NULL,
bias = TRUE,
bidirectional = TRUE,
dropout = 0,

epochs = 100,
batch_size = 32,
penalty = 0,

mixture = 0,
learn_rate = 0.001,

optimizer = "adam",
optimizer_args = list(),
loss = "mse”,

validation_split = 0,
device = NULL,

verbose = FALSE,
cache_weights = FALSE,

°

x = NULL,

= NULL
)
Arguments
formula Formula. Model formula (e.g., y ~ x1 + x2).
data Data frame. Training data.

hidden_neurons Integer vector. Number of neurons in each hidden layer.

activations Activation function specifications. See act_funs().
output_activation
Optional. Activation for output layer.

bias Logical. Use bias weights. Default TRUE.
epochs Integer. Number of training epochs. Default 100.
batch_size Integer. Batch size for training. Default 32.

penalty Numeric. Regularization penalty (lambda). Default @ (no regularization).

ffnn

5
mixture Numeric. Elastic net mixing parameter (0-1). Default .
learn_rate Numeric. Learning rate for optimizer. Default 0.001.
optimizer Character. Optimizer type ("adam", "sgd", "rmsprop"). Default "adam”.

optimizer_args Named list. Additional arguments passed to the optimizer. Default 1ist().

non non

loss Character. Loss function ("mse", "mae", "cross_entropy", "bce"). Default "mse".
validation_split
Numeric. Proportion of data for validation (0-1). Default @.

device Character. Device to use ("cpu", "cuda", "mps"). Default NULL (auto-detect).
verbose Logical. Print training progress. Default FALSE.
cache_weights Logical. Cache weight matrices for faster variable importance. Default FALSE.

Additional arguments. Can be used to pass x and y for direct interface.

X When not using formula: predictor data (data.frame or matrix).
y When not using formula: outcome data (vector, factor, or matrix).
rnn_type Character. Type of RNN ("rnn", "Istm", "gru"). Default "1stm".
bidirectional Logical. Use bidirectional RNN. Default TRUE.
dropout Numeric. Dropout rate between layers. Default 0.

Value

An object of class "ffnn_fit" containing the trained model and metadata.

FFNN

Train a feed-forward neural network using the torch package.

RNN

Train a recurrent neural network using the torch package.

Examples

if (torch::torch_is_installed()) {
Formula interface (original)
model_reg = ffnn(
Sepal.Length ~ .,
data = iris[, 1:4]7,
hidden_neurons = c(64, 32),
activations = "relu”,
epochs = 50
)

XY interface (new)

model_xy = ffnn(
hidden_neurons = c(64, 32),
activations = "relu”,
epochs = 50,

activations = NULL,
output_activation = NULL,
bias = TRUE

6 ffnn_generator
X = iris[, 2:4],
y = iris$Sepal.Length
)
3
if (torch::torch_is_installed()) {
Formula interface (original)
model_rnn = rnn(
Sepal.Length ~ .,
data = iris[, 1:41,
hidden_neurons = c(64, 32),
rnn_type = "lstm"”,
activations = "relu”,
epochs = 50
)
XY interface (new)
model_xy = rnn(
hidden_neurons = c(64, 32),
rnn_type = "gru",
epochs = 50,
x = iris[, 2:4],
y = iris$Sepal.Length
)
3
ffnn_generator Functions to generate nn_module (language) expression
Description
Functions to generate nn_module (language) expression
Usage
ffnn_generator(
nn_name = "DeepFFN",
hd_neurons,
no_x,
no_y,

ffnn_generator 7

rnn_generator(
nn_name = "DeepRNN",
hd_neurons,
no_x,
no_y,
rnn_type = "lstm",
bias = TRUE,
activations = NULL,
output_activation = NULL,
bidirectional = TRUE,

dropout = 0,
)
Arguments
nn_name Character. Name of the generated RNN module class. Default is "DeepRNN".
hd_neurons Integer vector. Number of neurons in each hidden RNN layer.
no_x Integer. Number of input features.
no_y Integer. Number of output features.
activations Activation function specifications for each hidden layer. Can be:

* NULL: No activation functions.
 Character vector: e.g., c("relu”, "sigmoid").
e List: e.g., act_funs(relu, elu, softshrink = args(lambd =0.5)).
* activation_spec object from act_funs().
If the length of activations is 1L, this will be the activation throughout the
architecture.
output_activation

Optional. Activation function for the output layer. Same format as activations
but should be a single activation.

bias Logical. Whether to use bias weights. Default is TRUE

rnn_type Character. Type of RNN to use. Must be one of "rnn", "1stm”, or "gru”.
Default is "1stm".

bidirectional Logical. Whether to use bidirectional RNN layers. Default is TRUE.
dropout Numeric. Dropout rate between RNN layers. Default is @.

Additional arguments (currently unused).

Details

The generated FFNN module will have the specified number of hidden layers, with each layer
containing the specified number of neurons. Activation functions can be applied after each hidden
layer as specified. This can be used for both classification and regression tasks.

The generated module properly namespaces all torch functions to avoid polluting the global names-
pace.

8 ffnn_generator

The generated RNN module will have the specified number of recurrent layers, with each layer
containing the specified number of hidden units. Activation functions can be applied after each
RNN layer as specified. The final output is taken from the last time step and passed through a linear
layer.

The generated module properly namespaces all torch functions to avoid polluting the global names-
pace.

Value

A torch module expression representing the FFNN.

A torch module expression representing the RNN.

Feed-Forward Neural Network Module Generator

The ffnn_generator () function generates a feed-forward neural network (FFNN) module expres-
sion from the torch package in R. It allows customization of the FFNN architecture, including the
number of hidden layers, neurons, and activation functions.

Recurrent Neural Network Module Generator

The rnn_generator() function generates a recurrent neural network (RNN) module expression
from the torch package in R. It allows customization of the RNN architecture, including the number
of hidden layers, neurons, RNN type, activation functions, and other parameters.

Examples

FFNN
if (torch::torch_is_installed()) {
Generate an MLP module with 3 hidden layers
ffnn_mod = ffnn_generator(
nn_name = "MyFFNN",
hd_neurons = c(64, 32, 16),

no_x = 10,
no_y =1,
activations = 'relu’

)

Evaluate and instantiate
model = eval(ffnn_mod) ()

More complex: With different activations
ffnn_mod2 = ffnn_generator(
nn_name = "MyFFNN2",
hd_neurons = c(128, 64, 32),
no_x = 20,
no_y = 5,
activations = act_funs(
relu,
selu,
sigmoid

ffnn_generator

)

Even more complex: Different activations and customized argument
for the specific activation function
ffnn_mod2 = ffnn_generator(
nn_name = "MyFFNN2",
hd_neurons = c(128, 64, 32),
no_x = 20,
no_y = 5,
activations = act_funs(
relu,
selu,
softshrink = args(lambd = 0.5)

)

Customize output activation (softmax is useful for classification tasks)
ffnn_mod3 = ffnn_generator(
hd_neurons = c(64, 32),

no_x = 10,
no_y = 3,
activations = 'relu’,
output_activation = act_funs(softmax = args(dim = 2L))
)
} else {
message("Torch not fully installed — skipping example”)
3
RNN

if (torch::torch_is_installed()) {
Basic LSTM with 2 layers
rnn_mod = rnn_generator(
nn_name = "MyLSTM",
hd_neurons = c(64, 32),

no_x = 10,

no_y =1,

rnn_type = "lstm”,
activations = 'relu'

)

Evaluate and instantiate
model = eval(rnn_mod) ()

GRU with different activations

rnn_mod2 = rnn_generator(
nn_name = "MyGRU",
hd_neurons = c(128, 64, 32),

no_x = 20,
no_y = 5,
rnn_type = "gru",

activations = act_funs(relu, elu, relu),

10 ffnn_wrapper

bidirectional = FALSE

)
} else {

message("Torch not fully installed — skipping example")
3
Not run:

Parameterized activation and dropout
(Will throw an error due to “nnf_tanh()~ not being available in ~{torch}")
rnn_mod3 = rnn_generator(
hd_neurons = c(100, 50, 25),
no_x = 15,
no_y = 3,
rnn_type = "lstm",
activations = act_funs(
relu,
leaky_relu = args(negative_slope = 0.01),
tanh
),
bidirectional = TRUE,
dropout = 0.3

R E E E

)

End(Not run)

ffnn_wrapper Basemodels-tidymodels wrappers

Description

Basemodels-tidymodels wrappers

Usage
ffnn_wrapper(formula, data, ...)
rnn_wrapper (formula, data, ...)
Arguments
formula A formula specifying the model (e.g., y ~ x1 + x2)
data A data frame containing the training data

Additional arguments passed to the underlying training function

grid_depth 11

Details

These wrapper functions are designed to interface with the {tidymodels} ecosystem, particularly
for use with tune: : tune_grid() and workflows. They handle the conversion of tuning parameters

(especially list-column parameters from grid_depth()) into the format expected by ffnn() and
rnn().

Value

e ffnn_wrapper() returns an object of class "ffnn_fit" containing the trained feedforward
neural network model and metadata. See ffnn() for details.

* rnn_wrapper () returns an object of class "rnn_fit" containing the trained recurrent neural
network model and metadata. See rnn() for details.

FFNN (MLP) Wrapper for {tidymodels} interface

This is a function to interface into { tidymodels?} (do not use this, use kindling: : ffnn() instead).

RNN Wrapper for {tidymodels} interface

This is a function to interface into {tidymodels} (do not use this, use kindling: : rnn() instead).

grid_depth Depth-Aware Grid Generation for Neural Networks

Description

grid_depth() extends standard grid generation to support multi-layer neural network architectures.
It creates heterogeneous layer configurations by generating list columns for hidden_neurons and
activations.

Usage

grid_depth(
X,
n_hlayer = 2L,
size = 5L,
type = c("regular”, "random”, "latin_hypercube"”, "max_entropy"”, "audze_eglais"),
original = TRUE,
levels = 3L,
variogram_range = 0.5,
iter = 1000L
)

S3 method for class 'parameters'
grid_depth(
X,

12

n_hlayer = 2L,
size = 5L,

grid_depth

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy", "audze_eglais"),

original = TRUE,
levels = 3L,
variogram_range = 0.5,
iter = 1000L

)

S3 method for class 'list'
grid_depth(

X’

n_hlayer = 2L,

size = 5L,

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy"”, "audze_eglais"),

original = TRUE,
levels = 3L,
variogram_range = 0.5,
iter = 1000L

)

S3 method for class 'workflow'
grid_depth(

X,
n_hlayer = 2L,
size = 5L,

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy", "audze_eglais"),

original = TRUE,
levels = 3L,
variogram_range = 0.5,
iter = 1000L

)

S3 method for class 'model_spec'
grid_depth(

X’

n_hlayer = 2L,

size = 5L,

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy", "audze_eglais"),

original = TRUE,
levels = 3L,
variogram_range = 0.5,
iter = 1000L

grid_depth

S3 method for class 'param'

grid_depth(
X7

L

n_hlayer = 2L,

size = 5L,

13

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy"”, "audze_eglais"),
original = TRUE,

levels = 3L,

variogram_range = 0.5,

iter = 1000L
)

Default S3 method:

grid_depth(
X’

n_hlayer = 2L,

size = 5L,

type = c("regular”, "random”, "latin_hypercube"”, "max_entropy", "audze_eglais"),
original = TRUE,

levels = 3L,

variogram_range = 0.5,

iter = 1000L

Arguments

X

n_hlayer

size

type

original
levels

variogram_range

iter

A parameters object, list, workflow, or model spec. Can also be a single param

object if ... contains additional param objects.

One or more param objects (e.g., hidden_neurons(), epochs()). If x is a
parameters object, ... is ignored. None of the objects can have unknown ()

values.

Integer vector specifying number of hidden layers to generate (e.g., 2: 4 for 2, 3,
or 4 layers), or a param object created with n_hlayers(). Default is 2.

Integer. Number of parameter combinations to generate.

non

Character. Type of grid: "regular”, "random", "latin_hypercube
or "audze_eglais".

Logical. Should original parameter ranges be used?

Integer. Levels per parameter for regular grids.

Numeric. Range for audze_eglais design.

Integer. Iterations for max_entropy optimization.

non
>

max_entropy",

14

Details

grid_depth

This function is specifically for {kindling} models. The n_hlayer parameter determines network
depth and creates list columns for hidden_neurons and activations, where each element is a
vector of length matching the sampled depth.

When n_hlayer is a parameter object (created with n_hlayers()), it will be treated as a tunable
parameter and sampled according to its defined range.

Value

A tibble with list columns for hidden_neurons and activations, where each element is a vector

of length n_hlayer.

Examples

Not run:
library(dials)
library(workflows)
library(tune)

Method 1: Fixed depth

grid = grid_depth(
hidden_neurons(c(32L,
activations(c("relu”,
epochs(c(50L, 200L)),

n_hlayer = 2:3,
type = "random”,
size = 20

)

Method 2: Tunable depth

grid = grid_depth(
hidden_neurons(c(32L,
activations(c("relu”,
epochs(c(50L, 200L)),

n_hlayer = n_hlayers(range =
type = "random”,
size = 20

)

Method 3: From workflow
wf = workflow() |>

add_model(mlp_kindling(hidden_neurons =

add_formula(y ~ .)

grid = grid_depth(wf, n_hlayer =

End(Not run)

128L)),
"elu”)),

using parameter object

128L)),
relun)y,

c(2L, 4L)),

tune(), activations

2:4, type = "latin_hypercube”,

= tune()))

size = 15)

|>

kindling-varimp 15

kindling-varimp Variable Importance Methods for kindling Models

Description
This file implements methods for variable importance generics from NeuralNetTools and vip pack-
ages.

Usage

S3 method for class 'ffnn_fit'
garson(mod_in, bar_plot = FALSE, ...)

S3 method for class 'ffnn_fit'
olden(mod_in, bar_plot = TRUE, ...)

S3 method for class 'ffnn_fit'

vi_model (object, type = c("olden", "garson"), ...)
Arguments
mod_in A fitted model object of class "ffnn_fit".
bar_plot Logical. Whether to plot variable importance (default TRUE).
Additional arguments passed to methods.
object A fitted model object of class "ffnn_fit".
type Type of algorithm to extract the variable importance. This must be one of the
strings:
* ’olden’
* ’garson’
Value

A data frame for both "garson" and "olden" classes with columns:

X_names Character vector of predictor variable names
y_names Character string of response variable name
rel_imp Numeric vector of relative importance scores (percentage)

The data frame is sorted by importance in descending order.

A tibble with columns "Variable" and "Importance” (via vip::vi() /vip::vi_model() only).

Garson’s Algorithm for FFNN Models

{kindling} inherits NeuralNetTools: :garson to extract the variable importance from the fitted
ffnn() model.

16 kindling-varimp

Olden’s Algorithm for FFNN Models

{kindling} inherits NeuralNetTools: :olden to extract the variable importance from the fitted
ffnn() model.

Variable Importance via {vip} Package

You can directly use vip::vi() and vip::vi_model() to extract the variable importance from the
fitted ffnn() model.

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.

Garson, G.D. 1991. Interpreting neural network connection weights. Artificial Intelligence Expert.
6(4):46-51.

Goh, A.T.C. 1995. Back-propagation neural networks for modeling complex systems. Artificial
Intelligence in Engineering. 9(3):143-151.

Olden, J.D., Jackson, D.A. 2002. Illuminating the *black-box’: a randomization approach for under-
standing variable contributions in artificial neural networks. Ecological Modelling. 154:135-150.

Olden, J.D., Joy, M.K., Death, R.G. 2004. An accurate comparison of methods for quantifying vari-
able importance in artificial neural networks using simulated data. Ecological Modelling. 178:389-
397.

Examples

if (torch::torch_is_installed()) {
model_mlp = ffnn(

Species ~ .,
data = iris,
hidden_neurons = c(64, 32),
activations = "relu”,
epochs = 100,
verbose = FALSE,
cache_weights = TRUE

)

Directly use “NeuralNetTools::garson”
model_mlp |>
garson()

Directly use “NeuralNetTools::olden”
model_mlp |>
olden()
} else {
message("Torch not fully installed — skipping example”)
3

mlp_kindling 17

kindling also supports “vip::vi()® / “vip::vi_model()"
if (torch::torch_is_installed()) {
model_mlp = ffnn(
Species ~ .,
data = iris,
hidden_neurons = c(64, 32),
activations = "relu”,
epochs = 100,
verbose = FALSE,
cache_weights = TRUE

)
model_mlp |>
vip::vi(type = 'garson') |>
vip::vip(Q)
} else {
message("Torch not fully installed — skipping example”)
3
mlp_kindling Multi-Layer Perceptron (Feedforward Neural Network) via kindling
Description

mlp_kindling() defines a feedforward neural network model that can be used for classification or
regression. It integrates with the tidymodels ecosystem and uses the torch backend via kindling.

Usage
mlp_kindling(
mode = "unknown”,
engine = "kindling",

hidden_neurons = NULL,
activations = NULL,
output_activation = NULL,
bias = NULL,

epochs = NULL,
batch_size = NULL,
penalty = NULL,

mixture = NULL,
learn_rate = NULL,
optimizer = NULL,
optimizer_args = NULL,
loss = NULL,
validation_split = NULL,
device = NULL,

verbose = NULL

18 mlp_kindling

Arguments
mode A single character string for the type of model. Possible values are "unknown",
"regression", or "classification".
engine A single character string specifying what computational engine to use for fitting.

Currently only "kindling" is supported.
hidden_neurons An integer vector for the number of units in each hidden layer. Can be tuned.

activations A character vector of activation function names for each hidden layer (e.g.,
"relu”, "tanh", "sigmoid"). Can be tuned.

output_activation
A character string for the output activation function. Can be tuned.

bias Logical for whether to include bias terms. Can be tuned.

epochs An integer for the number of training iterations. Can be tuned.

batch_size An integer for the batch size during training. Can be tuned.

penalty A number for the regularization penalty (lambda). Default @ (no regularization).

Higher values increase regularization strength. Can be tuned.

mixture A number between 0 and 1 for the elastic net mixing parameter. Default @ (pure
L2/Ridge regularization).
* Q: Pure L2 regularization (Ridge)
* 1: Pure L1 regularization (Lasso)

* @ < mixture < 1: Elastic net (combination of L1 and L2) Only relevant
when penalty > 0. Can be tuned.

learn_rate A number for the learning rate. Can be tuned.
optimizer A character string for the optimizer type ("adam", "sgd", "rmsprop"). Can be
tuned.

optimizer_args A named list of additional arguments passed to the optimizer. Cannot be tuned.

non non

loss A character string for the loss function ("mse", "mae", "cross_entropy", "bce").
Cannot be tuned.

validation_split
A number between 0 and 1 for the proportion of data used for validation. Can

be tuned.
device A character string for the device to use ("cpu", "cuda", "mps"). If NULL, auto-
detects available GPU. Cannot be tuned.
verbose Logical for whether to print training progress. Default FALSE. Cannot be tuned.
Details

This function creates a model specification for a feedforward neural network that can be used within
tidymodels workflows. The model supports:

* Multiple hidden layers with configurable units

* Various activation functions per layer

¢ GPU acceleration (CUDA, MPS, or CPU)

mlp_kindling 19

» Hyperparameter tuning integration

* Both regression and classification tasks

The hidden_neurons parameter accepts an integer vector where each element represents the num-
ber of neurons in that hidden layer. For example, hidden_neurons = c(128, 64, 32) creates a
network with three hidden layers.

The device parameter controls where computation occurs:

¢ NULL (default): Auto-detect best available device (CUDA > MPS > CPU)
* "cuda": Use NVIDIA GPU

* "mps”: Use Apple Silicon GPU

* "cpu”: Use CPU only

When tuning, you can use special tune tokens:

* For hidden_neurons: use tune("hidden_neurons”) with a custom range

e For activation: use tune("activation”) with values like "relu", "tanh"

Value

A model specification object with class mlp_kindling.

Examples

if (torch::torch_is_installed()) {

box: :use(
recipes[recipe],
workflows[workflow, add_recipe, add_model],
tune[tune],
parsnip[fit]
)

Model specs
mlp_spec = mlp_kindling(

mode = "classification”,

hidden_neurons = c(128, 64, 32),
activation = c("relu”, "relu”, "relu"),
epochs = 100

)

If you want to tune

mlp_tune_spec = mlp_kindling(
mode = "classification”,
hidden_neurons = tune(),
activation = tune(),
epochs = tune(),
learn_rate = tune()

wf = workflow() |>
add_recipe(recipe(Species ~ ., data = iris)) |>
add_model (mlp_spec)

20 ordinal_gen

fit_wf = fit(wf, data = iris)
} else {

message("Torch not fully installed — skipping example”)
3

ordinal_gen Ordinal Suffixes Generator

Description

This function is originally from numform: : f_ordinal().

Usage

ordinal_gen(x)

Arguments

X Vector of numbers. Could be a string equivalent

Value

Returns a string vector with ordinal suffixes.

This is how you use it
kindling:::ordinal_gen(1:10)

Note: This is not exported into public namespace. So please, refer to numform: : f_ordinal()
instead.

References

Rinker, T. W. (2021). numform: A publication style number and plot formatter version 0.7.0.
https://github.com/trinker/numform

https://github.com/trinker/numform

rnn_kindling

21

rnn_kindling

Recurrent Neural Network via kindling

Description

rnn_kindling() defines a recurrent neural network model that can be used for classification or re-
gression on sequential data. It integrates with the tidymodels ecosystem and uses the torch backend

via kindling.

Usage
rnn_kindling(
mode = "unknown",
engine = "kindling",

hidden_neurons = NULL,
rnn_type = NULL,

activations

NULL,

output_activation = NULL,

bias = NULL,

bidirectional = NULL,
dropout = NULL,
epochs = NULL,

batch_size =

NULL,

penalty = NULL,
mixture = NULL,

learn_rate =
optimizer =

NULL,
NULL,

optimizer_args = NULL,

loss = NULL,

validation_split = NULL,
device = NULL,
verbose = NULL

Arguments

mode

engine

hidden_neurons

rnn_type

activations

A single character string for the type of model. Possible values are "unknown",
"regression”, or "classification".

A single character string specifying what computational engine to use for fitting.
Currently only "kindling" is supported.

An integer vector for the number of units in each hidden layer. Can be tuned.

non

A character string for the type of RNN cell ("rnn", "Istm", "gru"). Cannot be
tuned.

A character vector of activation function names for each hidden layer (e.g.,
"relu", "tanh", "sigmoid"). Can be tuned.

22 rnn_kindling
output_activation
A character string for the output activation function. Can be tuned.
bias Logical for whether to include bias terms. Can be tuned.
bidirectional A logical indicating whether to use bidirectional RNN. Can be tuned.
dropout A number between 0 and 1 for dropout rate between layers. Can be tuned.
epochs An integer for the number of training iterations. Can be tuned.
batch_size An integer for the batch size during training. Can be tuned.
penalty A number for the regularization penalty (lambda). Default @ (no regularization).
Higher values increase regularization strength. Can be tuned.
mixture A number between 0 and 1 for the elastic net mixing parameter. Default @ (pure
L2/Ridge regularization).
* 0: Pure L2 regularization (Ridge)
* 1: Pure L1 regularization (Lasso)
* @ < mixture < 1: Elastic net (combination of L1 and L2) Only relevant
when penalty > 0. Can be tuned.
learn_rate A number for the learning rate. Can be tuned.
optimizer A character string for the optimizer type ("adam", "sgd", "rmsprop"). Can be
tuned.
optimizer_args A named list of additional arguments passed to the optimizer. Cannot be tuned.
loss A character string for the loss function ("mse", "mae", "cross_entropy", "bce").
Cannot be tuned.
validation_split
A number between 0 and 1 for the proportion of data used for validation. Can
be tuned.
device A character string for the device to use ("cpu", "cuda", "mps"). If NULL, auto-
detects available GPU. Cannot be tuned.
verbose Logical for whether to print training progress. Default FALSE. Cannot be tuned.
Details

This function creates a model specification for a recurrent neural network that can be used within
tidymodels workflows. The model supports:

* Multiple RNN types: basic RNN, LSTM, and GRU

* Bidirectional processing

* Dropout regularization

¢ GPU acceleration (CUDA, MPS, or CPU)

» Hyperparameter tuning integration

* Both regression and classification tasks

The device parameter controls where computation occurs:
e NULL (default): Auto-detect best available device (CUDA > MPS > CPU)
* "cuda": Use NVIDIA GPU

* "mps": Use Apple Silicon GPU
e "cpu”: Use CPU only

table_summary 23

Value

A model specification object with class rnn_kindling.

Examples

if (torch::torch_is_installed()) {

box: :use(
recipes[recipe],
workflows[workflow, add_recipe, add_modell],
parsnip[fit]

)

Model specs

rnn_spec = rnn_kindling(
mode = "classification”,
hidden_neurons = c(64, 32),
rnn_type = "lstm"”,
activation = c("relu”, "elu"),
epochs = 100,
bidirectional = TRUE

)

wf = workflow() |>
add_recipe(recipe(Species ~ ., data = iris)) |>

add_model (rnn_spec)

fit_wf = fit(wf, data = iris)

fit_wf
} else {
message("Torch not fully installed — skipping example")
3
table_summary Summarize and Display a Two-Column Data Frame as a Formatted
Table
Description

This function takes a two-column data frame and formats it into a summary-like table. The table
can be optionally split into two parts, centered, and given a title. It is useful for displaying summary
information in a clean, tabular format. The function also supports styling with ANSI colors and text
formatting through the {c1i} package and column alignment options.

Usage

table_summary(
data,

24

table_summary

title = NULL,
1 = NULL,
header = FALSE,

center_table
border_char =

FALSE,

n_n
’

style = 1list(),
align = NULL,
)
Arguments
data A data frame with exactly two columns. The data to be summarized and dis-
played.
title A character string. An optional title to be displayed above the table.
1 An integer. The number of rows to include in the left part of a split table. If
NULL, the table is not split.
header A logical value. If TRUE, the column names of data are displayed as a header.

center_table
border_char

style

align

Value

This function does

A logical value. If TRUE, the table is centered in the terminal.
Character used for borders. Default is "\u2500".

A list controlling the visual styling of table elements using ANSI formatting.
Can include the following components:

* left_col: Styling for the left column values.

* right_col: Styling for the right column values.

* border_text: Styling for the border.

» title: Styling for the title.

* sep: Separator character between left and right column.

non

Each style component can be either a predefined style string (e.g., "blue", "red_italic",
"bold") or a function that takes a context list with/without a value element and
returns the styled text.

Controls the alignment of column values. Can be specified in three ways:

* A single string: affects only the left column (e.g., "left", "center", "right").
* A vector of two strings: affects both columns in order (e.g., c("left", "right")).

* A list with named components: explicitly specifies alignment for each col-
umn

Additional arguments (currently unused).

not return a value. It prints the formatted table to the console.

table_summary

Examples

Create a sample data frame

df = data.frame(
Category = C(”A”’ HB”’ HCH’ IIDH, IIEII),
value = c(10, 20, 30, 40, 50)

)

Display the table with a title and header
table_summary(df, title = "Sample Table"”, header = TRUE)

Split the table after the second row and center it
table_summary(df, 1 = 2, center_table = TRUE)

Use styling and alignment
table_summary(
df, header = TRUE,
style = list(
left_col = "blue_bold",
right_col = "red",
title = "green"”,
border_text = "yellow”
),
align = c("center”, "right")

)

Use custom styling with lambda functions
table_summary(
df, header = TRUE,
style = list(
left_col = \(ctx) cli::col_red(ctx), # ctx$value is another option
right_col = \(ctx) cli::col_blue(ctx)
),
align = list(left_col = "left”, right_col = "right")

Index

act_funs, 2
args, 3

ffnn, 3

ffnn(), 11
ffnn_generator, 6
ffnn_wrapper, 10

garson. ffnn_fit (kindling-varimp), 15
grid_depth, 11
grid_depth(), 11

kindling-varimp, 15
mlp_kindling, 17

olden.ffnn_fit (kindling-varimp), 15
ordinal_gen, 20

rnn (ffnn), 3

rnn(), 11

rnn_generator (ffnn_generator), 6
rnn_kindling, 21

rnn_wrapper (ffnn_wrapper), 10

table_summary, 23
tune: :tune_grid(), 11/

vi_model.ffnn_fit (kindling-varimp), 15

26

	act_funs
	args
	ffnn
	ffnn_generator
	ffnn_wrapper
	grid_depth
	kindling-varimp
	mlp_kindling
	ordinal_gen
	rnn_kindling
	table_summary
	Index

