Package 'nzilbb.vowels'

May 6, 2025

Type Package

Title Vowel Covariation Tools

Version 0.4.1

Description Tools to support research on vowel covariation. Methods are provided to support Principal Component Analysis workflows (as in Brand et al. (2021) <doi:10.1016/j.wocn.2021.101096> and Wilson Black et al. (2023) <doi:10.1515/lingvan-2022-0086>).

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 4.1), patchwork

RoxygenNote 7.3.2.9000

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr

Config/testthat/edition 3

Imports dplyr, ggplot2, magrittr, rlang, rstudioapi, tibble, tidyr, forcats, glue, purrr, tidyselect, rsample, stringr, ggrepel, gghalves, smacof, Rdpack, lifecycle, vegan

RdMacros Rdpack

URL https://nzilbb.github.io/nzilbb_vowels/,

https://github.com/nzilbb/nzilbb_vowels

BugReports https://github.com/nzilbb/nzilbb_vowels/issues

Config/Needs/website rmarkdown, bookdown, tidyverse, ggcorrplot, mgcv, itsadug, broom, gganimate, grateful, gifski

NeedsCompilation no

Author Joshua Wilson Black [aut, cre, cph] (ORCID: <https://orcid.org/0000-0002-8272-5763>), James Brand [aut] (ORCID: <https://orcid.org/0000-0002-2853-9169>)

Maintainer Joshua Wilson Black < joshua@wilsonblack.nz>

Repository CRAN

Date/Publication 2025-05-06 04:10:02 UTC

Contents

correlation_test	2
lobanov_2	3
mds_test	4
onze_intercepts	6
onze_intercepts_full	7
onze_vowels	8
onze_vowels_full	9
pca_contrib_plot	10
pca_rotate_2d	11
pca_rotate_procrustes	12
pca_test	14
pc_flip	15
permutation_test	16
plot_correlation_counts	17
plot_correlation_magnitudes	18
plot_loadings	19
plot_mds_test	20
plot_pc_input	21
plot_pc_vs	22
plot_permutation_test	23
plot_procrustes_loadings	23
plot_variance_explained	24
plot_vowel_space	25
procrustes_loadings	26
qb_intervals	27
qb_vowels	29
sim_matrix	30
summary.correlation_test	30
	31

Index

correlation_test *Permutation test of pairwise correlations*

Description

Permute data a given number (n) of times, collecting pairwise correlations and testing them for significance. See plot_correlation_magnitudes() and plot_correlation_counts() for plotting functions which take the output of this function.

```
correlation_test(pca_data, n = 100, cor.method = "pearson")
```

lobanov_2

Arguments

pca_data	dataframe or matrix containing only continuous variables. (as accepted by the prcomp function.)
n	the number of times (integer) to permute that data. Warning: high values will take a long time to compute. Default: 100.
cor.method	<pre>method to use for correlations (default = "pearson"). Alternative is "spearman" (see ?cor.test).</pre>

Value

object of class correlation_test, with attributes:

- \$permuted_correlations A tibble of length n of pairs from the original data, their correlations, and the significance of each correlation (as p-values).
- \$actual_correlations the correlations of each pair of variables in the original data and their significance (as p-values).
- \$iterations the number of permutations carried out.
- \$cor_method the form of correlation used.

Examples

```
# get a small sample of random intercepts.
pca_data <- onze_intercepts |>
  dplyr::select(-speaker) |>
  dplyr::slice_sample(n=10)
# apply correlation test with 5 permutations.
# actual use requires at least 100.
cor_test <- correlation_test(pca_data, n = 5, cor.method = 'pearson')
# Return summary of significant correlations
summary(cor_test)
# use spearman correlation instead.
cor_test_spear <- correlation_test(pca_data, n = 10, cor.method = 'spearman')</pre>
```

lobanov_2

Apply Lobanov 2.0 normalisation

Description

lobanov_2() takes a data frame where the first four columns are:

- 1. speaker identifiers,
- 2. vowel identifiers,
- 3. first formant values in Hertz,
- 4. second formant values in Hertz.

It returns a dataframe with two additional columns, F1_lob2 and F2_lob2, containing normalised formant values.

Usage

lobanov_2(vowel_data)

Arguments

vowel_data a dataframe whose first four columns are speaker ids, vowel ids, F1 values, and F2 values.

Details

This functions applies Lobanov 2.0 normalisation presented in Brand et al. (2021). This variant of Lobanov normalisation is designed to work for datasets whether the vowel types have different token counts from one another. The Lobanov 2.0 value for a vowel is given by

$$F_{lobanov2.0_i} = \frac{F_{raw_i} - \mu(\mu_{vowel_1}, \dots, \mu_{vowel_n})}{\sigma(\mu_{vowel_1}, \dots, \mu_{vowel_n})}$$

where, for ease of notation, we assume all values are from a single speaker. We signify the n vowel types as vowel_1, ..., vowel_2, while i indicates the formant number. We implement the function for F1 and F2.

Value

a dataframe matching the input dataframe with additional columns F1_lob2 and F2_lob2, containing the lobanov normalised F1 and F2 values respectively.

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

Examples

normed_vowels <- lobanov_2(onze_vowels)
head(normed_vowels)</pre>

mds_test

Test optimal number of MDS dimensions.

mds_test

Description

[Experimental] Generate bootstrapped confidence intervals and permutation based null distribution for MDS analysis. Output shows how much stress is reduced by adding an additional dimension to the MDS analysis of dissimilarity_matrix, and bootstrapped iterations of dissimilarity_matrix, compared with the stress reduction expected from a matrix with no meaningful structure. This function is inspired by pca_test(), but is less connected with statistical literature than that function. We currently reject additional dimensions is they reduce less stress than we would expect by chance. That is, when the distribution from the boostrapped analyses sits notably lower than the permuted distribution when plotted by plot_mds_test()

Usage

```
mds_test(
    dissimilarity_matrix,
    n_boots = 50,
    n_perms = 50,
    test_dimensions = 5,
    principal = TRUE,
    mds_type = "ordinal",
    spline_degree = 2,
    spline_int_knots = 2,
    ...
)
```

Arguments

dissimilarity_matrix

	Square matrix of dissimilarity scores.
n_boots	Number of bootstrapping iterations (default: 25).
n_perms	Number of permutations (default: 25).
test_dimensions	5
	Number of MDS dimensions to test for stress reduction (default: 5).
principal	Whether to apply principal axis transform to MDS (default: TRUE)
mds_type	What kind of MDS to apply, see <pre>smacof::smacofSym()</pre> (default: 'ordinal')
spline_degree	How many spline degrees when type is 'mspline' (default: 2)
<pre>spline_int_knot</pre>	ts
	How many internal knots when type is 'mspline' (default: 2)
	Arguments passed to smacof::smacofSym()

Value

object of class mds_test_results, containing:

- \$stress_reduction a tibble containing
- \$n_boots Number of bootstrapping iterations.
- \$n_perms Number of permutation iterations
- \$mds_type Type of MDS analysis (type argument passed to smacof::smacofSym())
- \$principal Whether principal axis transformation is applied (passed to smacof::smacofSym())

Examples

```
# Apply interval MDS to `sim_matrix`, with 5 permutations and bootstraps
# testing up to 3 dimensions. In real usage, increase `n_boots` and `n_perms`
# to at least 50.
mds_test(
   smacof::sim2diss(sim_matrix, method="reverse"),
   n_boots = 5,
   n_perms = 5,
   test_dimensions = 3,
   mds_type = 'interval'
)
```

onze_intercepts Speaker random intercepts from GAMMs for 100 ONZE speakers

Description

A dataset containing the speaker intercepts extracted from GAMM models fit in Brand et al. (2021).

Usage

onze_intercepts

Format

A data frame with 100 rows and 21 variables:

speaker Anonymised speaker code (character).

F1_DRESS Speaker intercept from GAMM model of DRESS F1.

F2_DRESS Speaker intercept from GAMM model of DRESS F2.

F1_FLEECE Speaker intercept from GAMM model of FLEECE F1.

F2_FLEECE Speaker intercept from GAMM model of FLEECE F2.

F1_GOOSE Speaker intercept from GAMM model of GOOSE F1.

F2_GOOSE Speaker intercept from GAMM model of GOOSE F2.

F1_KIT Speaker intercept from GAMM model of KIT F1.

F2_KIT Speaker intercept from GAMM model of KIT F2.

F1_LOT Speaker intercept from GAMM model of LOT F1.

F2_LOT Speaker intercept from GAMM model of LOT F2.

F1_NURSE Speaker intercept from GAMM model of NURSE F1.

F2_NURSE Speaker intercept from GAMM model of NURSE F2.

F1_START Speaker intercept from GAMM model of START F1.

F2_START Speaker intercept from GAMM model of START F2.

```
6
```

F1_STRUT Speaker intercept from GAMM model of STRUT F1.

F2_STRUT Speaker intercept from GAMM model of STRUT F2.

F1_THOUGHT Speaker intercept from GAMM model of THOUGHT F1.

F2_THOUGHT Speaker intercept from GAMM model of THOUGHT F2.

F1_TRAP Speaker intercept from GAMM model of TRAP F1.

F2_TRAP Speaker intercept from GAMM model of TRAP F2.

Source

https://osf.io/q4j29/

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

onze_intercepts_full Speaker random intercepts for 418 ONZE speakers

Description

A dataset containing the speaker intercepts extracted from GAMM models fit in Brand et al. (2021).

Usage

onze_intercepts_full

Format

A data frame with 481 rows and 21 variables:

speaker Anonymised speaker code.

F1_DRESS Speaker intercept from GAMM model of DRESS F1.

F2_DRESS Speaker intercept from GAMM model of DRESS F2.

F1_FLEECE Speaker intercept from GAMM model of FLEECE F1.

F2_FLEECE Speaker intercept from GAMM model of FLEECE F2.

F1_GOOSE Speaker intercept from GAMM model of GOOSE F1.

F2_GOOSE Speaker intercept from GAMM model of GOOSE F2.

F1_KIT Speaker intercept from GAMM model of KIT F1.

F2_KIT Speaker intercept from GAMM model of KIT F2.

F1 LOT Speaker intercept from GAMM model of LOT F1.

F2_LOT Speaker intercept from GAMM model of LOT F2.

F2_NURSE Speaker intercept from GAMM model of NURSE F2.

F1_START Speaker intercept from GAMM model of START F1.

F2_START Speaker intercept from GAMM model of START F2.

F1_STRUT Speaker intercept from GAMM model of STRUT F1.

F2_STRUT Speaker intercept from GAMM model of STRUT F2.

F1_THOUGHT Speaker intercept from GAMM model of THOUGHT F1.

F2_THOUGHT Speaker intercept from GAMM model of THOUGHT F2.

F1_TRAP Speaker intercept from GAMM model of TRAP F1.

F2_TRAP Speaker intercept from GAMM model of TRAP F2.

Source

https://osf.io/q4j29/

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

onze_vowels

Monophthong data for random sample of speakers from the ONZE corpus

Description

A dataset containing the the first and second formants, speech rate, gender, and year of birth for 100 random speakers from the ONZE corpus. 50 speakers are sampled with birth years before 1900 and 50 sampled with birth years on or after 1900 to ensure a full span of the time period. Data is present for the following NZE monophthongs, represented by Wells lexical sets: DRESS, FLEECE, GOOSE, KIT, LOT, NURSE, START, STRUT, THOUGHT, TRAP. Data for FOOT is excluded due to low token counts.

Usage

onze_vowels

Format

A dataframe with 101572 rows and 8 variables:

speaker Anonymised speaker code (factor).

vowel Variable with Wells lexical sets for 10 NZE monophthongs. Levels: DRESS, FLEECE, GOOSE, KIT, LOT, NURSE, START, STRUT, THOUGHT, TRAP (factor).

F1_50 First formant, extracted from vowel mid-point using LaBB-CAT interface with Praat.

F2_50 Second formant, extracted from vowel mid-point using LaBB-CAT interface with Praat.

speech_rate Average speaker speech rate for whole recording.

gender Gender of speaker, two levels: "M", "F" (factor).

yob Year of birth of speaker.

word Anonymised word code (factor).

Details

This dataset is derived from the data made available in the supplementary materials of Brand et al. (2021).

Source

https://osf.io/q4j29/

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

onze_vowels_full Monophthong data for speakers from the ONZE corpus

Description

A dataset containing the the first and second formants, speech rate, gender, and year of birth for 481 speakers from the ONZE corpus. 50 speakers are sampled with birth years before 1900 and 50 sampled with birth years on or after 1900 to ensure a full span of the time period. Data is present for the following NZE monophthongs, represented by Wells lexical sets: DRESS, FLEECE, GOOSE, KIT, LOT, NURSE, START, STRUT, THOUGHT, TRAP. Data for FOOT is excluded due to low token counts.

Usage

onze_vowels_full

Format

A data frame with 414679 rows and 8 variables:

speaker Anonymised speaker code (factor).

vowel Variable with Wells lexical sets for 10 NZE monophthongs. Levels: DRESS, FLEECE, GOOSE, KIT, LOT, NURSE, START, STRUT, THOUGHT, TRAP (factor).

F1_50 First formant, extracted from vowel mid-point using LaBB-CAT interface with Praat.

F2_50 Second formant, extracted from vowel mid-point using LaBB-CAT interface with Praat.

speech_rate Average speaker speech rate for whole recording.

gender Gender of speaker, two levels: "M", "F" (factor).

yob Year of birth of speaker.

word Anonymised word code (factor).

Details

This dataset is derived from the data made available in the supplementary materials of Brand et al. (2021).

Source

https://osf.io/q4j29/

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

pca_contrib_plot PCA contribution plots

Description

Plot the contribution of each variable in a data set to a given Principal Component (PC). Variables are arranged by ascending contribution to the PC, where contribution is the squared loading for the variable expressed as a percentage. These plots match those given in supplementary material for Brand et al. (2021).

```
pca_contrib_plot(pca_object, pc_no = 1, cutoff = 50)
```

pca_rotate_2d

Arguments

pca_object	a pca object generated by prcomp or princomp.
pc_no	the PC to be visualised. Default value is 1.
cutoff	the cutoff value for interpretation of the PC. Determines what total percentage contribution we want from the variables we select for interpretation. The default of 50 means that we pick the variables with the highest contribution to the PC until we have accounted for 50% of the total contributions to the PC. Can be set to NULL in which case, no cutoff value is plotted.

Details

As with the other plotting functions in this package, the result is a ggplot2 plot. It can be modified using ggplot2 functions (see, e.g., plot_correlation_magnitudes().

Value

ggplot object.

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

Examples

```
onze_pca <- prcomp(onze_intercepts |> dplyr::select(-speaker), scale = TRUE)
```

Plot PC1 with a cutoff value of 60%
pca_contrib_plot(onze_pca, pc_no = 1, cutoff = 60)

Plot PC2 with no cutoff value.
pca_contrib_plot(onze_pca, pc_no = 2, cutoff = NULL)

pca_rotate_2d Manually rotate two PCs around the origin

Description

It is sometimes convenient to rotate principal components to most closely align with a sensible interpretation in terms of the original variables or to compare the results of PCA applied to two distinct datasets. This function allows for manual 2D rotations of principal components.

```
pca_rotate_2d(pca_obj, angle, pcs = c(1, 2))
```

Arguments

pca_obj	The result of a call to prcomp() or princomp(). NB It does not make sense to apply this function to the output of pca_test.
angle	A number indicating the number of degrees to rotate around the origin clock- wise. Negative values will rotated counterclockwise.
pcs	A two-element vector identifying the two PCs to rotate.

Details

NB: rotated components are not principal components. They no longer explain maximal variance. Rotated components should not be referred to as 'principal components'. The simplest approach is just to call them 'components' after describing the rotation. This function modifies objects of the class 'prcomp' and 'princomp', adding an additional 'note' which collects all the rotations which have been applied. This allows any plotting function which works with the outputs of prcomp() or princomp() to work. This may result in plots which incorrectly identify rotated components as principal components. Be careful not to include any such plot in a research output.

Value

An object matching the class of pca_obj with loadings, scores, and variance explained by each component modified.

Examples

```
pca_obj <- prcomp(onze_intercepts |> dplyr::select(-speaker), scale=TRUE)
# Rotate PCs 3 and 6 by 10 degrees.
rotated_pca <- pca_rotate_2d(pca_obj, 10, pcs = c(3,6))</pre>
```

pca_rotate_procrustes Apply Procrustes rotation to PCA loadings and scores.

Description

It is sometimes convenient to rotate principal components to align PCA applied to one dataset with PCA applied to another. This function allows for Procrustes rotation of Principal Components, without scaling. That is, we rotate and/or flip loadings or scores so that the PCA analyses to be rotated most closely matches the loadings (or scores) from the target PCA analysis.

```
pca_rotate_procrustes(
   to_rotate,
   target,
   max_pcs,
   rotate = "loadings",
   rotation_variables = "all"
)
```

Arguments

to_rotate	an object of class princomp or prcomp.	
target	an object of class princomp or prcomp	
max_pcs	an integer. Rotation will be applied from PC1 up to max_pcs.	
rotate	a string, either "loadings" or "scores", to identify whether the loadings of to_rotate should be aligned with target or the scores (default: "loadings")	
rotation_variables		
	a string, names of variables to be used in the rotation. Applied to rotation of loadings when two datasets have only partial overlap of variables. (default: "all",	

Details

NB: rotated components are not principal components. They no longer explain maximal variance. Rotated components should not be referred to as 'principal components'. The simplest approach is just to call them 'components' after describing the rotation. This function modifies objects of the class 'prcomp' and 'princomp', adding an additional 'note' which collects all the rotations which have been applied. This allows any plotting function which works with the outputs of prcomp() or princomp() to work. This may result in plots which incorrectly identify rotated components as principal components. Be careful not to include any such plot in a research output.

Value

an object matching the class of to_rotate.

Examples

```
# PCA on a subset of ONZE speakers
onze_pca <- prcomp(
    onze_intercepts |> dplyr::select(-speaker),
    scale = TRUE
)
# PCA on all ONZE speakers
onze_full <- prcomp(
    onze_intercepts_full |> dplyr::select(-speaker),
    scale = TRUE
)
# rotate subset to match loadings of `onze_full`
rotated_pca <- onze_pca |>
    pca_rotate_procrustes(
        onze_full, max_pcs = 5
    )
```

which uses all variables).

pca_test

Description

Permute and bootstrap data fed to PCA n times. Bootstrapped data is used to estimate confidence bands for variance explained by each PC and for each loading. Squared loadings are multiplied by the squared eigenvalue of the relevant PC. This ranks the loadings of PCs which explain a lot of variance higher than those from PCs which explain less. This approach to PCA testing follows Carmago (2022) and Vieria (2012). This approach differs from Carmago's PCAtest package by separating data generation and plotting.

Usage

```
pca_test(
   pca_data,
   n = 100,
   scale = TRUE,
   variance_confint = 0.95,
   loadings_confint = 0.9
```

Arguments

pca_data	data fed to the prcomp function.
n	the number of times to permute and bootstrap that data. Warning: high values will take a long time to compute.
scale	whether the PCA variables should be scaled (default: TRUE).
variance_confin	nt
	size of confidence intervals for variance explained (default: 0.95).
loadings_confin	nt

size of confidence intervals for index loadings (default: 0.9).

Details

Default confidence bands on variance explained at 0.95 (i.e. alpha of 0.05). In line with Vieria (2012), the default confidence bands on the index loadings are at 0.9.

See plot_loadings() and plot_variance_explained() for useful plotting functions.

Value

object of class pca_test_results, containing:

- \$variance a tibble containing the variances explained and confidence intervals for each PC.
- \$loadings a tibble containing the index loadings and confidence intervals for each variable and PC.

```
pc_flip
```

- \$raw_data a tibble containing the variance explained and loadings for each bootstrapped and permuted analysis.
- \$variance_confint confidence intervals applied to variance explained.
- \$loadings_confint confidence interval applied to loadings.
- \$n the number of iterations of both permutation and bootstrapping.

References

Camargo, Arley (2022), PCAtest: testing the statistical significance of Principal Component Analysis in R. *PeerJ* 10. e12967. doi:10.7717/peerj.12967

Vieira, Vasco (2012): Permutation tests to estimate significances on Principal Components Analysis. *Computational Ecology and Software* 2. 103–123.

Examples

```
onze_pca <- pca_test(
    onze_intercepts |> dplyr::select(-speaker),
    n = 10,
    scale = TRUE
)
summary(onze_pca)
```

pc_flip

Flip PC loadings

Description

The sign of the loadings and scores generated by PCA is arbitrary. Sometimes it is convenient to flip them so that all positive loadings/scores become negative (and vice versa). Sometimes one direction leads to a more natural interpretation. It is also useful when comparing the results of PCA across multiple data sets. This function will flip loadings and scores for PCA analyses carried out by the base R prcomp() and princomp() functions and for the pca_test() function from this package. If you specify only pc_no you will flip the loadings and scores for that PC. You can also specify a variable which you would like to have a positive loading in the resulting PCA.

Usage

```
pc_flip(pca_obj, pc_no, flip_var = NULL)
```

Arguments

pca_obj	The result of a call to prcomp(), princomp() or pca_test.
pc_no	An integer, indicating which PC is to be flipped.
flip_var	An optional name of a variable which will become positive in the PC indicated by pc_no.

Value

An object matching the class of pca_obj with relevant PC modified.

Examples

```
pca_obj <- prcomp(onze_intercepts |> dplyr::select(-speaker), scale=TRUE)
# flip the second PC
flipped_pca <- pc_flip(pca_obj, pc_no = 2)
# flip (if necessary) the third PC, so that the "F1_GOOSE" variable has
# a positive loading
flipped_pca <- pc_flip(pca_obj, pc_no = 3, flip_var = "F1_GOOSE")</pre>
```

permutation_test Run permutation test on PCA analysis.

Description

[**Superseded**] Permute data fed to PCA a given number of times, collecting the number of significant pairwise correlations in the permuted data and the variances explained for a given number of PCs.

Usage

```
permutation_test(
   pca_data,
   pc_n = 5,
   n = 100,
   scale = TRUE,
   cor.method = "pearson"
)
```

Arguments

pca_data	data fed to the prcomp function. Remove non-continuous variables.
pc_n	the number of PCs to collect variance explained from.
n	the number of times to permute that data. Warning: high values will take a long time to compute.
scale	whether the PCA variables should be scaled (default = TRUE).
cor.method	method to use for correlations (default = "pearson"). Alternative is "spearman".

Details

This function is now superseded. Use correlation_test() for pairwise correlations and pca_test() for variance explained and loadings.

Value

object of class permutation_test

- \$permuted_variances n x pc_no matrix of variances explained by first pc_no PCs in n permutations of original data.
- \$permuted_correlations list of length n of significant pairwise correlations in n permutations of the data (<= 0.05).
- \$actual_variances pc_n x 2 tibble of variances explained by first pc_n PCs with original data.
- \$actual_correlations the number of significant pairwise correlations (<= 0.05) in the original data.

Examples

```
permutation_test(
  onze_intercepts |> dplyr::select(-speaker),
  pc_n = 5,
  n = 10,
  scale = TRUE,
  cor.method = 'pearson'
)
```

plot_correlation_counts

Plot of correlation counts from correlation_test object

Description

Plot the number of statistically significant pairwise correlations in a data set given an alpha value against the distribution of counts of statistically significant pairwise correlations in permuted data. This is an informal test which is useful to convincing yourself that there is structure in your data which PCA might be able to uncover.

Usage

```
plot_correlation_counts(cor_test, alpha = 0.05, half_violin = FALSE)
```

Arguments

cor_test	an object of class correlation_test generated by correlation_test.
alpha	significance level for counting correlation as significant.
half_violin	Plot correlation counts using a half violin plot and half point plot. Quantiles are
	not currently supported.

Details

The resulting plot presents the distribution of *counts* of statistically significant correlations at a given alpha level in the permuted data and the count of statistically significant correlations in the original data. If the red dot is above the uppermost line inside the blue violin plot, we say the number of statistically significant correlations in the real data is itself statistically significant. Usually this is used as a rough sanity check in the course of a PCA workflow and we want to see the red dot well above the violin (as in the example below).

The resulting plot is a ggplot2 plot and can be modified using functions from that package. For instance, titles can be removed using the ggplot2::labs() function (as in the examples below).

Value

ggplot object.

Examples

```
# Test correlations (use at least n = 100)
cor_test <- correlation_test(onze_intercepts |>
    dplyr::select(-speaker), n = 10)
cor_plot <- plot_correlation_counts(cor_test)
cor_plot
# make statistical test more strict by reducing the alpha.
cor_plot_strict <- plot_correlation_counts(cor_test, alpha = 0.01)
# modify plot using `ggplot2` functions, e.g.
cor_plot_strict +
    ggplot2::labs(title = NULL) +
    ggplot2::theme_bw()
```

plot_correlation_magnitudes

Plot distribution of correlations from correlation_test object

Description

This plot type is used in Brand et al. (2021). It presents the magnitudes of the correlations from the real data as a solid red line, and the correlations from each iteration of the permutation test as light blue lines. This gives a visual sense of the distribution of random correlations compared with those in the actual data. If there are significant pairwise correlations in the data, the thick red line should be visually lower and wider across the plot than the thinner blue lines. If there are no significant pairwise correlations, then the thick red line will have the same shape as the blue lines.

Usage

plot_correlation_magnitudes(cor_test)

18

plot_loadings

Arguments

cor_test

an object of class correlation_test generated by correlation_test.

Value

ggplot object.

References

Brand, James, Jen Hay, Lynn Clark, Kevin Watson & Márton Sóskuthy (2021): Systematic covariation of monophthongs across speakers of New Zealand English. Journal of Phonetics. Elsevier. 88. 101096. doi:10.1016/j.wocn.2021.101096

Examples

```
# Test correlations (use at least n = 100)
cor_test <- correlation_test(onze_intercepts |>
  dplyr::select(-speaker), n = 10)
cor_plot <- plot_correlation_magnitudes(cor_test)
cor_plot
# modify plot using `ggplot2` functions, e.g.
cor_plot +
  ggplot2::labs(title = NULL) +
  ggplot2::theme_bw()
```

plot_loadings Plot PC index loadings from pca_test object.

Description

Index loadings (Vieira 2012) are presented with confidence intervals on the sampling distribution generated by bootstrapping and a null distribution generated by permutation.

```
plot_loadings(
    pca_test,
    pc_no = 1,
    violin = FALSE,
    filter_boots = FALSE,
    quantile_threshold = 0.25
)
```

Arguments

pca_test	an object of class pca_test_results generated by pca_test.	
pc_no	An integer indicating which PC to plot.	
violin	If TRUE, violin plots are added for the confidence intervals of the sampling distribution.	
filter_boots	if TRUE, only bootstrap iterations in which the variable with the highest median loading is above quantile_threshold.	
quantile_threshold		
	a real value between 0 and 1. Use this to change the threshold used for filtering bootstrap iterations. The default is 0.25.	

Details

If PCs are unstable, there is an option (filter_boots) to take only the bootstrap iterations in which the variable with the highest median loading across all iterations is above quantile_threshold (default: 0.25). This helps to reveal reliable connections of this variable with other variables in the data set.

Value

ggplot object.

References

Vieira, Vasco (2012): Permutation tests to estimate significances on Principal Components Analysis. *Computational Ecology and Software* 2. 103–123.

Examples

```
onze_pca <- pca_test(onze_intercepts |> dplyr::select(-speaker), n = 10)
# Plot PC1
plot_loadings(onze_pca, pc_no=1)
# Plot PC2 with violins (not particularly useful in this case!)
plot_loadings(onze_pca, pc_no=2, violin = TRUE)
```

plot_mds_test Plot mds_test() results

Description

[Experimental] Plot output from mds_test().

Usage

plot_mds_test(mds_test)

plot_pc_input

Arguments

mds_test Object of class mds_test_results (generated by mds_test()).

Value

ggplot object.

Examples

```
mds_result <- mds_test(
    sim_matrix,
    n_boots = 10,
    n_perms = 10,
    test_dimensions = 3,
    mds_type = 'interval'
)
plot_mds_test(mds_result)</pre>
```

plot_pc_input

Plot Scores from Significant PCs Against PCA Input

Description

It is sometimes useful to see the relationship between PCs and the raw values of the input data fed into PCA. This function takes the results of running pca_test, the scores for each speaker from the pca object, and the raw data fed into the PCA analysis. In the usual model-to-pca analysis pipeline, the resulting plot depicts by-speaker random intercepts for each vowel and an indication of which variables are significantly loaded onto the PCs. It allows the researcher to visualise the strength of the relationship between intercepts and PC scores.

Usage

```
plot_pc_input(pca_object, pca_data, pca_test)
```

Arguments

pca_object	Output of prcomp.
pca_data	Data fed into prcomp. This should not include speaker identifiers.
pca_test	Output of pca_test

Value

a ggplot object.

Examples

```
pca_data <- onze_intercepts |> dplyr::select(-speaker)
onze_pca <- prcomp(pca_data, scale = TRUE)
onze_pca_test <- pca_test(pca_data, n = 5) # Increase n to at least 100 in practice.
plot_pc_input(onze_pca, pca_data, onze_pca_test)</pre>
```

plot_pc_vs

Plot PC loadings in vowel space

Description

Plot loadings from a PCA analysis carried out on vocalic data. Vowel positions mean values are at the mean with arrows indicating loadings. Loadings are multiplied by the standard deviation, by vowel, of the initial input data. This is OK for getting a quick, intuitive, interpretation of what the PCs mean in the vowel space. When using a model-to-PCA pipeline, it is not recommended to use these plots directly in publications as the models should more reliably control variation in vocalic readings than taking the standard mean and standard deviation.

Usage

```
plot_pc_vs(vowel_data, pca_obj, pc_no = 1, is_sig = FALSE)
```

Arguments

vowel_data	A dataframe whose first four columns are speaker ids, vowel ids, F1 values, and F2 values.
pca_obj	The result of a call to prcomp(), princomp() or pca_test().
pc_no	An integer, indicating which PC to plot (default is PC1).
is_sig	A boolean, indicating whether only 'significant' loadings, according to pca_test should be plotted (only works with objects of class pca_test_results).

Value

a ggplot object.

Examples

```
onze_pca <- prcomp(onze_intercepts |> dplyr::select(-speaker), scale=TRUE)
# Default is to plot PC1
plot_pc_vs(onze_vowels, onze_pca)
# Or plot another PC with `pc_no`
plot_pc_vs(onze_vowels, onze_pca, pc_no = 3)
```

22

plot_permutation_test Create plot from permutation_test().

Description

[**Superseded**] Plots results of a permutation test carried out with the permutation_test() function. Now use either correlation_test() or pca_test() and the associated plotting functions.

Usage

```
plot_permutation_test(permutation_results, violin = FALSE)
```

Arguments

permutation_results object of class permutation_results.

violin Determines whether the variances explained are depicted by distinct violin plots for each PC or by connected lines. the advantage of lines is that they correctly indicate that values for each PC depend on one another within a given permutation. That is, if an earlier PC soaks up a lot of the variation in a data set, then

there is less variation left to explain by subsequent PCs. Default value is FALSE.

Value

ggplot object.

Examples

```
onze_perm <- permutation_test(
    onze_intercepts |> dplyr::select(-speaker),
    pc_n = 5,
    n = 10,
    scale = TRUE,
    cor.method = 'pearson'
    )
plot_permutation_test(onze_perm)
```

plot_procrustes_loadings

Plot loadings with confidence bands from procrustes_loadings()

Description

[Experimental] Plot index loadings or loadings with confidence intervals and null distributions generated by bootstrapping and permutation followed by Procrustes rotation. This approach works when PC loadings are unstable due to multiple PCs explaining similar amounts of variance. This is an alternative to the use of bootstrapping without Procrustes rotation (as in pca_test()) and avoids the need for the use of the filter_boots argument to plot_loadings().

Usage

```
plot_procrustes_loadings(proc_loadings, pc_no = 1, loadings_confint = 0.9)
```

Arguments

Value

a ggplot object.

Examples

```
proc_loadings <- procrustes_loadings(
    pca_data = onze_intercepts |> dplyr::select(-speaker),
    max_pcs = 3,
    index = TRUE,
    n = 10, # set this to at least 100 in actual use.
    scale = TRUE
  )
  plot_procrustes_loadings(proc_loadings, pc_no = 2)
```

plot_variance_explained

Create plot of variances explained from pca_test object

Description

The variance explained by each PC in a dataset is plotted with confidence intervals generated by bootstrapping and a null distribution generated by permutation. The function accepts the result of calling the pca_test function.

Usage

```
plot_variance_explained(pca_test, pc_max = NA, percent = TRUE)
```

Arguments

pca_test	an object of class pca_test_results generated by pca_test.
pc_max	the maximum number of PCs to plot. If NA, plot all PCs.
percent	if TRUE, represent variance explained as a percentage. If FALSE, represent as
	eigenvalues.

24

plot_vowel_space

Details

By default, variance explained is represented as a percentage. If the argument percent is set to FALSE, then the variance explained is represented by the eigenvalues corresponding to each PC.

Value

ggplot object.

Examples

```
onze_pca <- pca_test(onze_intercepts |> dplyr::select(-speaker), n = 10)
# Plot with percentages
plot_variance_explained(onze_pca)
# Plot with eigenvalues and only the first 5 PCs.
plot_variance_explained(onze_pca, pc_max = 5, percent = FALSE)
```

plot_vowel_space *Plot vowel space for speaker or speakers.*

Description

Given vowel data with the first column identifying speakers, the second identifying vowels, the third containing F1 and the fourth containing F2 values, plot a vowel space using the speaker's mean values for each vowel. Typically it is best to produce a plot from scratch. The primary purpose of this function is to generate quick plots for interactive use, rather than to produce plots for publication.

Usage

```
plot_vowel_space(
   vowel_data,
   speakers = NULL,
   vowel_colours = NULL,
   label_size = 4,
   means_only = TRUE,
   ellipses = FALSE,
   point_alpha = 0.1,
   facet = TRUE
)
```

Arguments

vowel_data	data frame of vowel tokens as described above.
speakers	list of speaker identifiers for speaker whose vowel space is to be plotted.
vowel_colours	a named list of vowel = colour entries to indicate which colour to plot each vowel.
label_size	It is often convenient to adjust the size of the labels (in pts). Default is 4.

means_only	whether to plot means only or all data points. Default: TRUE.
ellipses	whether to 95% confidence ellipses. Only works if means_only is FALSE. Default is FALSE.
point_alpha	alpha value for data points if means_only is FALSE.
facet	whether to plot distinct speakers in distinct facets. Default is TRUE.

Value

ggplot object.

Examples

```
# Plot mean vowel space across
plot_vowel_space(
    onze_vowels,
    speakers = NULL,
    vowel_colours = NULL,
    label_size = 4,
    means_only = TRUE,
    ellipses = FALSE,
    point_alpha = 0.1,
    facet = FALSE
)
```

procrustes_loadings Generate distribution of (index) loadings using the bootstrap and Procrustes rotation.

Description

[Experimental] Generate distribution of loadings or signed index loadings for Principal Components. These are used in order to estimate confidence intervals for loadings and, if signed index loadings are used, also a null distribution for tests of statistical significance. Plot the results using plot_procrustes_loadings().

Usage

```
procrustes_loadings(pca_data, max_pcs, index = TRUE, n = 500, scale = TRUE)
```

Arguments

pca_data	data fed to the prcomp function.
max_pcs	maximum number of PCs to rotate.
index	whether to use signed index loadings rather than loadings (default: TRUE)
n	the number of bootstrapped and permuted samples.
scale	whether the variables in pca_data should be scaled before PCA (default: TRUE)

qb_intervals

Value

a tibble, with columns:

- source either "Sampling", "Null" or "Original", identifying where the loadings comes from. "Original" identifies loadings from the full dataset, "Sampling" identifies loadings from the bootstrapped samples, "Null" identifies loadings from permuted versions of the data.
- id identifies which iteration of either permutation or bootstrapping the loading comes from.
- variable indicates the variable corresponding to the loading.
- a column containing the loading for each PC up to max_pcs.

Examples

```
proc_loadings <- procrustes_loadings(
    pca_data = onze_intercepts |> dplyr::select(-speaker),
    max_pcs = 3,
    index = TRUE,
    n = 10, # set this to at least 100 in actual use.
    scale = TRUE
)
```

qb_intervals Formant and amplitude for intervals of QuakeBox monologues

Description

QuakeBox monologues are divided into intervals of fixed length within mean values are calcualted for formants, amplitude, and articulation rate. Data from 77 speakers is provide (the same sample as qb_vowels).

Usage

qb_intervals

Format

A data frame with 53940 rows and 10 variables:

interval_length Length of interval in seconds.

speaker Anonymised speaker code (char).

interval Time in seconds at which interval ends.

articulation_rate Mean articulation rate within interval.

amplitude Mean maximum amplitude within interval.

DRESS_F1 Speaker intercept from GAMM model of DRESS F1.

DRESS_F2 Speaker intercept from GAMM model of DRESS F2.

FLEECE_F1 Speaker intercept from GAMM model of FLEECE F1.

FLEECE_F2 Speaker intercept from GAMM model of FLEECE F2.

GOOSE_F1 Speaker intercept from GAMM model of GOOSE F1.

GOOSE_F2 Speaker intercept from GAMM model of GOOSE F2.

KIT_F1 Speaker intercept from GAMM model of KIT F1.

KIT_F2 Speaker intercept from GAMM model of KIT F2.

LOT_F1 Speaker intercept from GAMM model of LOT F1.

LOT_F2 Speaker intercept from GAMM model of LOT F2.

NURSE_F1 Speaker intercept from GAMM model of NURSE F1.

NURSE_F2 Speaker intercept from GAMM model of NURSE F2.

START_F1 Speaker intercept from GAMM model of START F1.

START_F2 Speaker intercept from GAMM model of START F2.

STRUT_F1 Speaker intercept from GAMM model of STRUT F1.

STRUT_F2 Speaker intercept from GAMM model of STRUT F2.

THOUGHT_F1 Speaker intercept from GAMM model of THOUGHT F1.

THOUGHT_F2 Speaker intercept from GAMM model of THOUGHT F2.

TRAP_F1 Speaker intercept from GAMM model of TRAP F1.

TRAP_F2 Speaker intercept from GAMM model of TRAP F2.

Details

Two interval lengths are given: 60 seconds and 240 seconds.

Formant data is z-scored by speaker and vowel, while the amplitude and articulation rate are zscored by speaker.

Original data was generated for Wilson Black et al. (2023).

Source

https://osf.io/m8nkh/

References

Wilson Black, Joshua, Jennifer Hay, Lynn Clark & James Brand (2023): The overlooked effect of amplitude on within-speaker vowel variation. Linguistics Vanguard. Walter de Gruyter GmbH. 9(1). 173–189. doi:10.1515/lingvan-2022-0086

qb_vowels

Description

A dataset containing formant values, amplitude, articulation rate, and following segment data for 10 New Zealand English monophthongs, along with participant demographics.

Usage

qb_vowels

Format

A data frame with 26331 rows and 14 variables:

speaker Anonymised speaker code (char).

- vowel Wells lexical sets for 10 NZE monophthongs. Levels: DRESS, FLEECE, GOOSE, KIT, LOT, NURSE, START, STRUT, THOUGHT, TRAP, FOOT (char).
- F1_50 First formant in Hz, extracted from vowel mid-point using LaBB-CAT interface with Praat.
- F2_50 Second formant in Hz, extracted from vowel mid-point using LaBB-CAT interface with Praat.

participant_age_category Age category of speaker. Values: 18-25, 26-35, 36-45, ..., 76-85 (char).

participant_gender Gender of participant. Values: M, F (char).

- **participant_nz_ethnic** New Zealand ethnic category of participant. Values: NZ mixed ethnicity, NZ European, Other (char).
- word_freq Frequency of word from which vowel token is taken in CELEX.
- word Anonymised word id (char).

time Time in seconds at which vowel segment starts.

vowel_duration Length of vowel in seconds.

articulation_rate Articulation rate of utterance from which token is taken.

- **following_segment_category** Category of following segment. NB: liquids have already been removed. Levels: labial, velar, other (factor).
- **amplitude** Maximum amplitude of word from which vowel token is taken, generated by LaBB-CAT interface with Praat.

Details

Original data was generated for Wilson Black et al. (2023).

Source

https://osf.io/m8nkh/

References

Wilson Black, Joshua, Jennifer Hay, Lynn Clark & James Brand (2023): The overlooked effect of amplitude on within-speaker vowel variation. Linguistics Vanguard. Walter de Gruyter GmbH. 9(1). 173–189. doi:10.1515/lingvan-2022-0086

sim_matrix

Similarity matrix from online perception test.

Description

Mean similarity ratings for 38 QuakeBox speakers from an online pairwise similarity task. Random noise added.

Usage

sim_matrix

Format

A 38x38 matrix

summary.correlation_test

Summary function for correlation test object. Set alpha to change significance level.

Description

Set alpha to change significance level and n_cors to change number of pairwise correlations given.

Usage

```
## S3 method for class 'correlation_test'
summary(object, alpha = 0.05, n_cors = 5, ...)
```

Arguments

object	object of class correlation test,
alpha	significance level for counting correlation as significant.
n_cors	number of pairwise correlations to list.
	additional arguments affecting the summary produced.

Value

a glue object.

Index

* datasets onze_intercepts, 6 onze_intercepts_full, 7 onze_vowels, 8 onze_vowels_full, 9 qb_intervals, 27 qb_vowels, 29 sim_matrix, 30 correlation_test, 2 correlation_test(), 16, 23 ggplot2::labs(), 18 $lobanov_2, 3$ mds_test, 4 mds_test(), 20, 21 onze_intercepts, 6 onze_intercepts_full, 7 onze_vowels, 8 onze_vowels_full, 9 pc_flip, 15 pca_contrib_plot, 10 pca_rotate_2d, 11 pca_rotate_procrustes, 12 pca_test, 14 pca_test(), 5, 15, 16, 23 permutation_test, 16 permutation_test(), 23 plot_correlation_counts, 17 plot_correlation_counts(), 2 plot_correlation_magnitudes, 18 plot_correlation_magnitudes(), 2, 11 plot_loadings, 19 plot_loadings(), 14, 23 plot_mds_test, 20 plot_mds_test(), 5 plot_pc_input, 21

plot_pc_vs, 22 plot_permutation_test, 23 plot_procrustes_loadings, 23 plot_procrustes_loadings(), 26 plot_variance_explained, 24 plot_variance_explained(), 14 plot_vowel_space, 25 prcomp(), 15 princomp(), 15 procrustes_loadings, 26 procrustes_loadings(), 24

qb_intervals, 27
qb_vowels, 29

sim_matrix, 30
smacof::smacofSym(), 5
summary.correlation_test, 30