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optimParallel: An R Package Providing a
Parallel Version of the L-BFGS-B
Optimization Method
by Florian Gerber and Reinhard Furrer

Abstract The R package optimParallel provides a parallel version of the L-BFGS-B optimization
method of optim(). The main function of the package is optimParallel(), which has the same
usage and output as optim(). Using optimParallel() can significantly reduce the optimization time,
especially when the evaluation time of the objective function is large and no analytical gradient is
available. We introduce the R package and illustrate its implementation, which takes advantage of the
lexical scoping mechanism of R.

Introduction

Many statistical tools involve optimization algorithms, which aim to find the minima or maxima of
an objective function f n : Rp → R, where p ∈N denotes the number of parameters. Depending on
the specific application different optimization algorithms may be preferred; see the book by Nash
(2014), the special issue of the Journal of Statistical Software (Varadhan, 2014), and the CRAN Task
View Optimization for overviews of the optimization software available for R. A widely used algorithm
is the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints (L-BFGS-B,
Byrd et al., 1996), which is available through the general-purpose optimizer optim() of the R package
stats and the more recent R packages lbfgsb3 (Nash et al., 2015) and lbfgsb3c (Fidler et al., 2018). The
L-BFGS-B algorithm has proven to work well in numerous applications. However, long optimization
times of computationally intensive functions sometimes hinder its application; see Gerber et al. (2017)
for an example of such a function from our research in spatial statistics. For this reason we present a
parallel version of the optim() L-BFGS-B algorithm, denoted with optimParallel(), and explore its
potential to reduce optimization times.

To illustrate the possible speed gains of a parallel L-BFGS-B implementation let gr : Rp → Rp

denote the gradient of f n(). L-BFGS-B always first evaluates f n() and then gr() at the same parameter
value and we call one such sequential evaluation one step. Note that this step should not be confused
with the iteration as defined in Byrd et al. (1996) and used in the help page of optim(), because the latter
may involve several steps. Let Tf n and Tgr denote the evaluation times of f n() and gr(), respectively.
In the case where gr() is specified in the optim() call, one step of the L-BFGS-B algorithm evaluates
f n() and gr() sequentially, and hence, the evaluation time is little more than Tf n + Tgr per step. In
contrast, optimParallel() evaluates both functions in parallel, which reduces the evaluation time to
little more than max{Tf n, Tgr} per step. In the case where no gradient is provided, optim() calculates
a numeric central difference gradient approximation (CGA). For p = 1 the CGA is defined as

g̃r(x) = ( f n(x + ε)− f n(x− ε)) / 2 ε, (1)

and hence, requires two evaluations of f n(). Similarly, calculating g̃r() requires 2p evaluations of f n()
if f n() has p parameters. In total, optim() sequentially evaluates f n() 1 + 2p times per step, resulting
in an elapsed time of little more than (1 + 2p)Tf n per step. Given 1 + 2p available processor cores,
optimParallel() evaluates all calls of f n() in parallel, which reduces the elapsed time to little more
than Tf n per step.

optimParallel() by examples

The main function of the R package optimParallel (Gerber, 2019) is optimParallel(), which has the
same usage and output as optim(), but evaluates f n() and gr() in parallel. For illustration, consider
107 samples from a normal distribution with mean µ = 5 and standard deviation σ = 2. Then, we
define the following negative log-likelihood and use optim() to estimate the parameters µ and σ:1

1It is obvious that simpler ways exists to estimate µ and σ. Moreover, a computationally more efficient version
of negll() can be constructed based on mean() and sd().
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> x <- rnorm(n = 1e7, mean = 5, sd = 2)
> negll <- function(par, x) -sum(dnorm(x = x, mean = par[1], sd = par[2], log = TRUE))
> o1 <- optim(par = c(1, 1), fn = negll, x = x, method = "L-BFGS-B",
+ lower = c(-Inf, 0.0001))
> o1$par
[1] 5.000597 2.000038

Using optimParallel(), we can do the same in parallel. The functions makeCluster(), detectCores(),
and setDefaultCluster() from the R package parallel are used to set up a default cluster for the
parallel execution.

> install.packages("optimParallel")
> library("optimParallel")
Loading required package: parallel
> cl <- makeCluster(detectCores()); setDefaultCluster(cl = cl)
> o2 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001))
> identical(o1, o2)
[1] TRUE

On our computer with 12 Intel Xeon E5-2640 @ 2.50GHz processors one evaluation of negll() took
0.9 seconds. optim() run with 6.2 seconds per step, whereas optimParallel() run with 1.8 seconds per
step. Thus, the optimization time of optimParallel() is reduced by 71% compared to that of optim().
Note that for p = 2, 71% is below the maximal possible reduction of 1− 1/(2p + 1) = 80% because
of the overhead associated with the parallel execution and the time needed to run the L-BFGS-B
algorithm, which are both not taken into account in this calculation. In general, the reduction of the
optimization time is large if the parallel overhead is small relative to the execution time of f n(). Hence,
for this example, the reduction of the optimization time approaches 80% when the evaluation time of
negll() is increased, e. g., by increasing the number of data points in x.

In addition to the arguments of optim(), optimParallel() has the argument parallel, which
takes a list of arguments. For example, we can set parallel = list(loginfo = TRUE) to store all
evaluated parameters and the corresponding gradients.

> o3 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE))
> head(o3$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[1,] 1 1.000000 1.000000 109213991 -40005963 -190049608
[2,] 2 1.205988 1.978554 39513324 -9693283 -18700810
[3,] 3 1.265626 2.086455 37160791 -8579638 -14969646
> tail(o3$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[16,] 16 5.000840 2.000140 21121045 609.9480540 507.56421
[17,] 17 5.000586 2.000041 21121045 -26.8237162 15.17266
[18,] 18 5.000597 2.000038 21121045 0.6494038 -1.67717

This can be used to visualize the optimization path as shown in Figure 1 and simplifies the following
study, which illustrates the impact of using different (approximate) gradient specifications.

In the optimParallel() calls above the argument gr was not specified, and hence, the CGA was
used. Another way of using optimParallel() is with a gradient function given to the argument gr. If
the computation of the analytical gradient is tractable and does not take more time than evaluating f n(),
this usage is preferred.

> negll_gr <- function(par, x){
+ sm <- mean(x); n <- length(x)
+ c(-n*(sm-par[1])/par[2]^2,
+ n/par[2] - (sum((x-sm)^2) + n*(sm-par[1])^2)/par[2]^3)
+ }
> o4 <- optimParallel(par = c(1, 1), fn = negll, gr = negll_gr, x = x,
+ lower = c(-Inf, 0.0001), parallel = list(loginfo = TRUE))
> tail(o4$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[16,] 16 5.000840 2.000139 21121045 609.9651113 507.625076
[17,] 17 5.000586 2.000041 21121045 -26.8233339 15.172072
[18,] 18 5.000597 2.000037 21121045 0.6494452 -1.677113

We see that the resulting optimization path is very similar to that based on the CGA (o3 above).
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Figure 1: Visualization of the optimization path based on the log information obtained with
optimParallel(..., parallel = list(loginfo = TRUE)). The red lines mark the estimates µ̂
and σ̂.

Besides the CGA and the option to explicitly specify a gradient function, optimParallel() provides
a third option, namely the numeric forward difference gradient approximation (FGA) defined as
g̃r(x) = ( f n(x + ε)− f n(x))/ε for p = 1 and x sufficiently away from the boundaries. Using the
FGA, the return value of f n(x) can be reused for the computation of the gradient, and hence, the
number of evaluations of f n() is reduced to 1 + p per step. This can be helpful if the number of
available cores is less than 1 + 2p or insufficient memory is available to run 1 + 2p evaluations of f n()
in parallel.

> o5 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE, forward = TRUE))
> o5$loginfo[17:19, ]

step par1 par2 fn gr1 gr2
[1,] 17 5.000086 1.999541 21121046 -26.33029 14.35781
[2,] 18 5.000331 1.999645 21121045 586.89953 534.85303
[3,] 19 5.000346 1.999651 21121045 625.10421 567.27441

> tail(o5$loginfo, n = 3)
step par1 par2 fn gr1 gr2

[31,] 31 5.000347 1.999652 21121045 627.8436 569.5991
[32,] 32 5.000347 1.999652 21121045 627.8436 569.5991
[33,] 33 5.000347 1.999652 21121045 627.8436 569.5991

We see that the optimizer only stopped after 33 steps, whereas all previous optimization calls stopped
after 18 steps. Hence, it is obvious that the choice of the gradient approximation affects the optimization.
But what happened exactly?—It should be noted that the FGA is less accurate than the CGA; see, e. g.,
the numerical study in Nash (2014), Section 10.7. Hence, small differences in the optimization path are
expected, but this does hardly explain the additional 15 steps used by the FGA based optimization.
A closer inspection of the optimization path reveals that up to step 18 the path is very similar to those
of the previous optimization calls and the remaining steps 19–33 only marginally change par1 and
par2. This suggests that using the FGA prevents the algorithm from stopping. One way to handle this
issue is to set a less restrictive stopping criterion by increasing the value of factr.

> o6 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE, forward = TRUE),
+ control = list(factr = 1e-6/.Machine$double.eps))
> tail(o6$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[14,] 14 4.996680 2.001974 21121074 -8524.7678 12125.5022
[15,] 15 4.999743 1.998478 21121052 -884.4955 -5305.2516
[16,] 16 5.000347 1.999652 21121045 627.8436 569.5991

Now the resulting optimization path and the evaluation counts are similar to those resulting from
the optimization using the analytic gradient (o4 above). The take-home message of this study is that
the choice of the (approximate) gradient can affect the optimization path and it may be necessary to
adjust control parameters such as factr, ndeps, and parscale to obtain satisfactory results. A more
detailed discussion of the use of (approximate) gradients in optimization can be found in Nash (2014),
Chapter 10.
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Implementation

optimParallel() is a wrapper to optim() and enables the parallel evaluation of all function calls
involved in one step of the L-BFGS-B optimization method. It is implemented in R and interfaces
compiled C code only through optim(). The reuse of the stable and well-tested C code of optim()
has the advantage that optimParallel() leads to the exact same results as optim(). To ensure that
optimParallel() and optim() indeed return the same results optimParallel contains systematic unit
tests implemented with the R package testthat (Wickham, 2017, 2011).

The basic idea of the implementation is that calling fn() (or gr()) triggers the evaluation of both
fn() and gr(). Their return values are stored in a local environment. The next time fn() (or gr()) is
called with the same parameters the results are read from the local environment without evaluating
fn() and gr() again. The following R code illustrates how optimParallel() takes advantage of the
lexical scoping mechanism of R to store the return values of fn() and gr().

> demo_generator <- function(fn, gr) {
+ par_last <- value <- grad <- NA
+ eval <- function(par) {
+ if(!identical(par, par_last)) {
+ message("--> evaluate fn() and gr()")
+ par_last <<- par
+ value <<- fn(par)
+ grad <<- gr(par)
+ } else
+ message("--> read stored value")
+ }
+ f <- function(par) {
+ eval(par = par)
+ value
+ }
+ g <- function(par) {
+ eval(par = par)
+ grad
+ }
+ list(fn = f, gr = g)
+ }
> demo <- demo_generator(fn = sum, gr = prod)

Calling demo$fn() triggers the evaluation of both fn() and gr().

> demo$fn(1:5)
--> evaluate fn() and gr()
[1] 15

The subsequent call of demo$gr() with the same parameters returns the stored value grad without
evaluating gr() again.

> demo$gr(1:5)
--> read stored value
[1] 120

A similar construct allows optimParallel() to evaluate f n() and gr() at the same occasion. It is then
straightforward to parallelize the evaluations of the functions using the R package parallel.

Speed gains and performance test

To illustrate the speed gains that can be achieved with optimParallel() we measure the elapsed times
per step when optimizing the following test function and compare them to those of optim().

> fn <- function(par, sleep) {
+ Sys.sleep(sleep)
+ sum(par^2)
+ }
> gr <- function(par, sleep) {
+ Sys.sleep(sleep)
+ 2*par
+ }
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Figure 2: Benchmark experiment comparing the L-BFGS-B method from optimParallel() and
optim(). Plotted are the elapsed times per step (y-axis) and the evaluation time of f n() (x-axis)
for p = 1, 2, and 3 using an approximate gradient and p = 3 using an analytic gradient. The elapsed
times of optimParallel() (solid line) are independent of p and the specification of an analytic gradient.

In both functions the argument par can be a numeric vector with one or more elements and the argu-
ment sleep controls the evaluation time of the functions. We measure the elapsed time per step using
all combinations of p = 1, 2, 3, sleep = 0, 0.05, 0.2, 0.4, 0.6, 0.8, 1 seconds with and without analytic
gradient gr(). All measurements are taken on a computer with 12 Intel Xeon E5-2640 @ 2.50GHz
processors. However, because of the experimental design a maximum of 7 processors are used in
parallel. We repeat each measurement 5 times using the R package microbenchmark (Mersmann et al.,
2018). The complete R script of the benchmark experiment is contained in optimParallel.

The results of the benchmark experiment are summarized in Figure 2. They show that for
optimParallel() the elapsed time per step is only marginally larger than Tf n (black circles in Fig-
ure 2). Conversely, the elapsed time for optim() is Tf n + Tgr if a gradient function is specified (violet
circles) and (1 + 2p)Tf n if no gradient function is specified (red, green, and blue circles). Moreover,
optimParallel() adds a small overhead, and hence, it is only faster than optim() for Tf n larger than
0.05 seconds.

The use of Sys.sleep() in this illustration is useful to characterize the implementation and its
overhead. However, it does not represent a practical use case of optimParallel() and the speed gains
might be less pronounced for other examples. One factor that reduces the speed of optimParallel()
is the specification of large objects in its "..." argument. All those objects are copied to the running
R sessions in the cluster, which increases the elapsed time. Related to that is the increased memory
usage, which may slowdown the optimization when not enough memory is available.

Summary

The R package optimParallel provides a parallel version of the L-BFGS-B optimization method of
optim(). After a brief theoretical illustration of the possible speed improvement based on parallel
processing, we illustrate optimParallel() by examples. The examples demonstrate that one can
replace optim() by optimParallel() to execute the optimization in parallel and illustrate additional
features like capturing log information and using different (approximate) gradients. Moreover, we
briefly sketch the basic idea of the implementation, which is based on the lexical scoping mechanism
of R. Finally, a performance test shows that using optimParallel() reduces the elapsed time to
optimize computationally demanding functions significantly. For functions with evaluation times
of more than 0.1 seconds we measured speed gains of about factor 2 in the case where an analytic
gradient was specified and about factor 1 + 2p otherwise (p is the number of parameters). Our results
suggest that using optimParallel() is most beneficial when (i) the evaluation time of f n() is large
(more than 0.1 seconds), (ii) no analytical gradient is available, and (iii) p or more processors as well as
enough memory are available.
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