
{rrapply}: Revisiting R-base rapply()

The minimal rrapply-package contains a single function rrapply(), providing an extended implementation of R-base’s rapply() function.
rrapply() recursively applies a function f to elements of a nested list and controls how to structure the returned result.

Function signature

• object
• condition

• f

• classes

• deflt
• how
• options
• ...

a "list-like" object;
a condition function for application
of f;
a function to recursively apply to
each list element;
classes to which f is applied, can
include "list" or "data.frame";
a default return value;
how to structure the result;
additional options for how;
additional arguments for f and
condition functions;

How to structure the result

• how = "replace"

replaces elements x satisfying condition and
classes by f(x) and maintains list structure:

• how = "list"

replaces elements x satisfying condition and
classes by f(x) and others by deflt
maintaining list structure:

• how = "unlist"

similar to how = "list" unlisting the returned
result:

• how = "prune"

similar to how = "replace" pruning all elements
not subject to f:

• how = "flatten"

similar to how = "prune" returning a flattened
unnested pruned list. Coercion is the same as
how = "unlist" (using the default options):

• how = "melt"

similar to how = "prune" returning a melted
data.frame of the pruned list with columns L1,
L2, ..., value. Each row contains the path
and value of an element x:

• how = "recurse"

similar to how = "replace" but recurses
further into modified elements satisfying
condition and classes after application of f:

• how = "names"

similar to how = "recurse" replacing the name
of element x by f(x) instead of its content using
classes = c("list", "ANY") by default:

Special arguments .xname, .xpos,
.xparents and .xsiblings

Example data

rrapply(
 object,
 condition,
 f,

classes = "ANY",
 deflt = NULL,
 how = c("replace", "list", "unlist",
 "prune", "flatten", "melt", "bind",

"recurse", "unmelt", "names"),
 options,
 ...
)

 library(rrapply)
 # data: renewable energy per country 2016
 # as % of total energy consumption
 data("renewable_energy_by_country")
 # data: pokemon properties in pokemon GO
 data("pokedex")

 # replace all missing values by 0
 rrapply(
 renewable_energy_by_country,
 condition = \(x) is.na(x),
 f = \(x) 0,
 how = "replace"
)

 # replace all missing values by 0
 rrapply(
 renewable_energy_by_country,
 condition = \(x) !is.na(x),
 delft = 0,
 how = "list"
)

 # replace missing values by 0 and unlist
 rrapply(
 renewable_energy_by_country,
 classes = "numeric",
 delft = 0,
 how = "unlist"
)

 # prune all missing values and maintain
 # list structure
 rrapply(
 renewable_energy_by_country,
 condition = \(x) !is.na(x),
 how = "prune"
)

 # prune all missing values and return
 # flattened list
 rrapply(
 renewable_energy_by_country,
 condition = \(x) !is.na(x),
 how = "flatten"
)

 # prune all missing values and melt list
 l <- rrapply(
 renewable_energy_by_country,
 condition = \(x) !is.na(x),
 how = "melt"
)

• how = "bind"

similar to how = "prune" unnesting repeated
list elements into a wide data.frame. Each
repeated element expands to a single row with
columns aligned by names:

 # unnest repeated list to wide data.frame
 rrapply(pokedex, how = "bind")

 # recursively remove all list attributes
 rrapply(
 renewable_energy_by_country,
 f = \(x) c(x),
 classes = c("list", "ANY"),
 how = "recurse"
)

 ## recursively capitalize all names in list
 rrapply(
 renewable_energy_by_country,
 f = \(x, .xname) toupper(.xname),
 how = "names"
)

• how = "unmelt"

reconstructs a nested list from a melted
data.frame as returned by how = "melt":

 # unmelt data.frame back to nested list
 rrapply(l, how = "unmelt")

 # unnest to wide data.frame and include
 # parent node names as columns L1, L2, ...
 rrapply(
 pokedex,
 how = "bind"
 options = list(namecols = T)
)

The f and condition functions accept four special
arguments in addition to the principal argument:

•.xname evaluates to the name of the current
list element:

•.xpos evaluates to the position of the element
in the nested list as an integer vector:

 # return position of element in list
 rrapply(
 renewable_energy_by_country,
 condition = \(x, .xname) .xname == "Belgium",
 f = \(x, .xpos) .xpos,
 how = "flatten"
)

 # filter list elements by name
 rrapply(
 renewable_energy_by_country,
 condition = \(x, .xname) .xname == "Belgium"
 how = "prune"
)

•.xparents evaluates to the vector of parent
names of the current element. .xsiblings
evaluates to the parent list containing the
current element and its direct siblings:

 # filter list elements by parent names
 rrapply(
 renewable_energy_by_country,
 condition = \(x, .xparents)
 "Europe" %in% .xparents,
 how = "melt"
)

R-package webpage: https://jorischau.github.io/rrapply/

