## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/vignette_", out.width = "100%" ) ## ----setup-------------------------------------------------------------------- library(setweaver) ## ----example_1, results='hide',message=FALSE---------------------------------- # Loading the package, which automatically also downloads the example data (misimdata) library(setweaver) # Pairing variables results = pairmi(misimdata[,2:11],alpha = 0.05,n_elements = 5) ## ----table_1,echo=FALSE,results='asis'---------------------------------------- knitr::kable(results$expanded.data[c(1:5),],caption = 'Table 1. Expanded Data',align = c('c')) ## ----table_2,echo=FALSE,results='asis'---------------------------------------- knitr::kable(results$sets,caption = 'Table 2. Information on sets',align = c('c')) ## ----example_2, results='hide',message=FALSE---------------------------------- # Evaluating the sets evaluated_sets = probstat(misimdata$y,results$expanded.data[,results$sets$set],nfolds = 5) ## ----table_3,echo=FALSE,results='asis'---------------------------------------- knitr::kable(evaluated_sets[c(1:5),],caption = 'Table 3. Evaluated sets',align = c('c')) ## ----example_3, fig.align = "center", fig.height = 6, fig.width =8, fig.cap="Plot 1. Setmap of sets that consist of 2 elements"---- # Visualizing the sets setmapmi(results$original.variables,results$sets,n_elements = 2) ## ----example_4, fig.align = "center", fig.height = 6, fig.width = 6, fig.cap="Plot 2. Graph showing the relation between certain sets and an outcome y"---- # Creating a graph where sets are relate to an outcome using logistic regression effects plot_prob(cbind(y=misimdata[,1],results$expanded.data[,13:17]), 'y',colnames(results$expanded.data[,13:17]),method='logistic') ## ----example_5, results='hide',message=FALSE---------------------------------- # Compute entropy and mutual information diagnostics for selected variables descriptives = entfuns(misimdata$y,misimdata[,2:3]) ## ----table_4,echo=FALSE,results='asis'---------------------------------------- knitr::kable(entfuns(misimdata$y,misimdata[,2:3]),caption = 'Table 4. Diagnostic statistics from entfuns()',align = c('c'))