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Summary

1. We present an R-package, stagePop, which uses delay-differential equa-
tions to model the deterministic dynamics and interactions of stage-structured
populations (i.e. where the life cycle consists of distinct stages - e.g. eggs,
juveniles and reproductive adults).

2. The continuous time formulation enables stagePop to easily simulate
time-varying stage durations and overlapping generations.

3. The package can be used to model predator-prey interactions, host-parasitoid
interactions, resource competition, intra-specific competition and the ef-
fects of environmental change on stage-structured (and non-stage struc-
tured) species.

4. Our code is based on the formulation by Nisbet and Gurney (1983) us-
ing delay differential equations, which are solved using the R-packages
deSolve or PBSddesolve.

1 Introduction

stagePop is an R package that can be used to model the deterministic dynamics
and interactions of stage-structured populations. These are populations where
the life cycle consists of distinct stages - e.g. eggs, juveniles and reproductive
adults. Explicitly including stage structure when modelling the population dy-
namics of stage-structured organisms can have an enormous effect on the result-
ing dynamics. This may be because the organism is only predated upon when it
is in certain life stages. Or that environmental variables, such as temperature,
only influence the development rate of certain stages.
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stagePop has been specifically designed to investigate these sorts of eco-
logical problems and can therefore simulate the dynamics of stage-structured
populations that are involved in predator-prey interactions, host-parasitoid in-
teractions, resource competition, environmental change and so on. It also has
the ability to simulate the dynamics of any number of strains within a species
and therefore can be used to test questions about diversity and intra-specific
competition. This means it is ideally suited to investigate the timely issues of
biological engineering and control, biodiversity and climate change.

The package is based on the formulation by Bill Gurney and Roger Nisbet
(Nisbet and Gurney (1983); Gurney et al. (1983); Gurney and Nisbet (1998)),
described in detail in Appendix 1. Broadly speaking the model assumes that
once an individual is born, unless it dies, it moves through its different life stages
as if on a conveyor belt which may speed up and slow down as its development
rate changes. Thus, an organism begins life by being born into the first stage
and then, if it survives long enough, will mature into each successive stage.
Within each stage it is assumed that each individual has the same vital rates
e.g. the same death rates, the same rate of maturation etc. The formulation is
based on delay differential equations (which are solved within stagePop using
the R-packages deSolve (Soetaert et al., 2010) or PBSddesolve (Schnute et al.,
2013) and this continuous time formulation copes easily with time-varying stage
durations. Non-stage-structured species (which don’t require delay equations)
may also be modelled using stagePop which is useful when modelling the in-
teractions of a number of species where not all have distinct life stages. In this
paper we give a description of stagePop and provide a number of examples
demonstrating how stagePop can be used for different modelling projects.

2 Running stagePop

To install the stagePop package, in R, type install.packages(‘stagePop’) fol-
lowed by library(stagePop). To run the model the function popModel() is
called. In this section we give a brief overview of this function (further details
are given in Appendix 2). The output from popModel() is a matrix which
contains the values of the state variables, the probabilities of surviving each
stage, the durations of each stage (if time-varying) and the rates of change of
each state variable at the times specified, via ‘timeVec’, in the input to pop-
Model(). Each column of the output matrix is named using the ‘speciesNames’
and ‘stageNames’ specified in the popModel inputs (see Section 1.2, Appendix
2). Different species may be specified in any order (as long as the definition is
consistent) but the life stages must be referred to in the same order as they are
in the life cycle. Furthermore, the birth of new organisms is assumed to be into
the first stage only.

The input arguments to popModel() are used to completely define the
model system and are described in detail in Appendix 2 (section 1.1). One
of these inputs is a list containing all the rate functions (e.g. death rates,
reproduction rates etc) for all entities in the model. Appendix 2 (section 1.1.1)
gives a detailed description on how these functions must be defined.

Also included in the stagePop package are the following functions:

• checkSolution() produces warnings if the solution contains any negative
values
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• genericPlot() provides a basic plot of the results (most of the figures in
this paper have been generated automatically by stagePop)

• plotStrains() if there are multiple strains in a species, will plot them
individually (genericPlot() only plots the sum of the strains).

• runStagePopExample runs the examples shown in section 3, e.g. run-
StagePopExample(‘BlowFlies’)

• sumStrains if there are multiple strains in a species, sums the model
output over the strains in each species.

These functions are automatically called in the popModel() function, un-
less the user specifies otherwise, but can also be used on a stand alone basis.
In Appendix 2 we give some tips on how to check the solution generated from
stagePop is accurate (Appendix 2, section 3) and some ideas on trouble shoot-
ing typical problems that may occur with the delay differential equation solvers
(Appendix 2, section 4).

3 Example Applications

In this section we demonstrate how stagePop can be used to simulate a wide
range of problems involving stage-structured populations. Where possible, in
order to verify our software is working correctly, we have reproduced published
examples. The scripts for all of these examples are included in the stagePop

package1, are reproduced in Appendix 3 and are also attached as supplementary
files. They are intended to serve as a template for users when defining their own
problems. The name of the appropriate script is given in square brackets in each
example heading and they can be run in R (after (‘library(stagePop)’) using
runStagePopExample(‘BlowFlies’) (for the BlowFlies.R example).

3.1 Single Species with fixed death rates and stage dura-
tions [BlowFlies.R]

A classic example of a stage-structured population is Nicholson’s Blowflies (Gur-
ney et al. (1983); Nicholson (1954, 1957)). Australian sheep blowflies, which
have five distinct developmental stages, grown under controlled conditions in a
laboratory experiment were found to exhibit sustained, large, quasi-cyclic fluc-
tuations in their adult populations. To reproduce these experiments, the per
capita death rates and duration of each stage are assumed to be constant (values
are given in the caption for Fig. 1 and in Script 1, Appendix 3) and the repro-

ductive rate (i.e. rate of egg production) is defined as 8.5 exp
(

−A(t)
600

)

where

the A(t) is the reproductive adult stage (stage 5) and eggs are stage 1. The
simulation is initiated with the immigration of 100 adults per day over the first
day (this is fairly arbitrary however - the magnitude of the rate of immigration
does not affect the equilibrium state results; similarly the immigration can be
into any life stage). Script 1 (Appendix 3) shows how popModel can be used
to simulate this situation. Fig 1 shows the plot automatically generated by
stagePop (compare with Fig. 3 by Gurney et al. (1983)).

1These files are located in the stagePop installation directory and may be accessed by

‘system.file("DemoFiles/ExampleFileName.R", package = "stagePop")’
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Figure 1: Simulation of the five life stages of Nicholson’s blow flies (Section 3.1).
The per capita death rates for stages 1-5 are 0.07, 0.004, 0.003, 0.0025, 0.27 d−1

and the durations of stages 1-4 are 0.6, 5.0, 5.9, 4.1 d. Compare with Fig. 3 by
Gurney et al. (1983).

3.2 A single species with density-dependent death rates:
Larval Competition [LarvalComp.R]

In this second example from Gurney et al. (1983), a two stage moth population
(larvae and adults) is considered in which larval competition for resources re-
sults in a density dependent per capita larval death rate given by αL(t) where
α=5x10−5 moths−1 d−1 and L(t) is the density of larvae at time t. The larval
stage duration is 28 d and reproduction (by adults) is given by qA(t) where
q = 9.4 eggs/adult/d and A(t) is the density of adults at time t. Two different
cases are considered; in the first, the adult death rate is fixed at 0.2 d−1, in the
second, the adults are assumed to die after 5 days. In this second case the adult
death rate is set to zero and a third stage (corpses) is added to the model. We
begin both of the simulations with the immigration of adults at a rate of 20 d−1

over the first day. The results are shown in Fig. 2 and Figs. 2c and 2d can be
compared with Fig. 4 by Gurney et al. (1983). This example demonstrates the
huge difference in population dynamics caused by different ways of modelling
the death of adults. The code required to run either of these cases in stagePop

is shown in Script 2, Appendix 3.

3.3 A single species whose stage durations depend on tem-
perature [VarDurEnv.R]

Unfortunately we could not find a sufficiently simple published example of a
continuous-time model of a stage-structured population affected by temperature
change (although there are more complex ones, e.g. Beck-Johnson et al. (2013)),
so we have formulated our own example.

4



stagePop: stage-structured population modelling

0 100 200 300 400 500

0
10

00
20

00
30

00
40

00
50

00

time

de
ns

ity

larvae
adults
larvae
adultsa)

0 100 200 300 400 500

0
20

00
40

00
60

00
80

00

time

de
ns

ity

larvae
adults
dead adults

larvae
adults
dead adults

larvae
adults
dead adults

b)

0 100 200 300 400 500

0
50

10
0

15
0

Days

N
um

be
r 

of
 A

du
lts

c)

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Days

N
um

be
r 

of
 A

du
lts

d)

Figure 2: Modelling larval competition. a) the adult death rate is constant at
0.2 d−1; b) the adults have a fixed lifetime of 5 d; c) and d) are the same as a)
and b) but show only adults for comparison with Fig. 4 a and b, by Gurney
et al. (1983).

5



stagePop: stage-structured population modelling

We consider a theoretical species with two stages (juvenile and adult) where
growth experiments conducted over a range of different but constant temper-
atures, Tc, have shown that the length of the juvenile stage, τ , is affected by
temperature according to:

τ(Tc) = τmin +

(

Tc − Topt

w

)2

(1)

where Topt = 20oC, w = 2oC d and τmin = 60 d (see Fig. 3a and tauFunc in
Script 3 in Appendix 3). We use this relationship to define the instantaneous
juvenile development rate,

g(T (t)) =
1

τ(T (t))
(2)

which we assume will also apply to time-varying temperatures, T (t). To inform
stagePop that we are dealing with a problem involving a time-varying stage
duration we set ‘timeDependDuration’ equal to TRUE. Since in this example
τ is now changing with time, we define develFunc using Eq. 2 and this is
used to compute the rate of change of τ(T (t)) (Eq. 9 in Appendix 1. The
durationFunc (which is used to define non-time-varying durations) is now only
used to define the length of the stage duration at the begining of the simulation
(see Script 3, Appendix 3).

We then simulate the growth of the species over a number of years where
the temperature, T , varies over an annual cycle according to,

T (t) = Ta(1 − cos(2π(t + 80)/365)) (3)

where the yearly average temperature, Ta, is 15o C, t is in days and the time
offset of 80 d is required to prevent the species dying out due to low temperatues
when the population is small at the start of the simulation. This is defined in
the function tempFunc in Script 3 (Appendix 3) and displayed in Fig. 3c.

The simulation begins with the immigration of adults and reproduction is
assumed to be density dependent. The definition of this model is described for
stagePop using Script 3 (Appendix 3) and the results are shown in Fig. 3. The
changes in the juvenile stage duration τ over time, computed from stagePop

are shown in Fig. 3d and these are compared with the value of τ computed from
Eq. 1 which is the stage duration if the current temperature, T (t), had been
constant over the stage duration.

3.4 Two interacting species: Predator-Prey System
[PredPrey1.R] and [PredPrey2.R]

In this example we show how stagePop can be used to model two species –
a predator and its prey. We begin with the classic Lotka-Volterra predator-
prey model where neither species has stage structure (PredPrey1.R) and then
increase the complexity by adding in stage structure for the predator and then
density dependent death for the prey (PredPrey2.R) which is the system studied
by Gourley and Kuang (2004).

The classic Lotka-Volterra equations (Lotka, 1925) are given by

ẋ(t) = rx(t) − py(t)x(t) (4)

ẏ(t) = bpy(t)x(t) − Dy(t) (5)
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Figure 3: Simulation of a single species with a juvenile and adult stage where
the juvenile development rate is temperature dependent (Section 3.3). a) Re-
lationship between juvenile stage duration and temperature (Section 3.3 (Eq.
1)); b) Results from stagePop; c) temperature time series; d) comparison of
calculations of τ . Note the lower two plots are shown for a shorter time period
(2 years rather than 6 years) for clarity.
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where x(t) and y(t) are the prey and predator densities at time t respectively,
rx(t) is the prey reproduction rate, py(t) is the per capita death rate of prey
due to predation, bpy(t)x(t) is the predator reproduction rate and D is the per
capita death rate of the predator.

This system is defined in stagePop as shown in Script 4 (Appendix 3).
The results of the simulation are shown in Fig. 4. The analytical solution
to Equations 4 and 5 is the closed loop shown in Fig. 4b. However, if the
tolerances on the DDE solver are not strict enough, the solution will be subject
to numerical errors and the predator-prey loop in Fig. 4b will not be closed. For
example changing the value of ‘tol’ in ‘solverOptions’ from ‘1e-7’ to ‘1e-3’
gives the result shown in Figs. 4c and 4d (see Appendix 2, Section 3, for further
tips on how to check your solution is accurate).

We now look at the case where the predator has juvenile and adult stages (yj

and y respectively) and only the adult stage consumes the prey. The equations
now become

ẋ(t) = rx(t) − py(t)x(t) (6)

ẏj(t) = bpy(t)x(t) − bpy(t − τj)x(t − τj) exp(−Djτj) − Djyj(t) (7)

ẏ(t) = bpy(t − τj)x(t − τj) exp(−Djτj) − Dy(t). (8)

where Dj is the juvenile predator per capita death rate (here set at 1 d−1) and
τj is the length of the juvenile predator stage duration. The stagePop code for
this new situation is in Script 5 (Appendix 3) (where ‘case=1’) and the results
of the simulation for τj=0.1 are shown in Fig. 5. It is clear that adding in
a juvenile stage which does not predate causes large changes compared to the
equilibrium situation shown in Fig. 4 (a and b).

We now add in a density dependent death rate for the prey such that the
prey equation becomes

ẋ(t) = rx(t)(1 −
x(t)

K
) − py(t)x(t) (9)

which is the system investigated by Gourley and Kuang (2004) (Gourley and
Kuang, 2004). To run this in stagePop we only need state a value for K and
modify deathFunc as shown for cases>1 in Script 5 (Appendix 3) With K=1
and the other parameters as before, Fig. 6 shows the results when the predator
juvenile stage duration is 0.1 d and 1.8 d (cases 2 and 3 respectively in Script
5 (Appendix 3). Note the length of the simulation has been increased so that
these plots can be more easily compared with results in Gourley and Kuang
(2004). The results from stagePop compare well with these until τj ≥ 15 after
which there are large, unaccounted for discrepancies between the simulations
(cases 6 and 7 in PredPrey2.R (Script 5, Appendix 3)).

3.5 Multiple interacting species: Host-Parasitoid System
[Briggs.R]

This example considers three interacting species, all with stage structure, in the
host-parasitoid system investigated by Briggs (1993). The host species has 3
life stages (eggs, E; larvae, L and adult, A) and is attacked by two competing
parasitoids: P , which attacks the host eggs and, Q, which attacks the host
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Figure 4: a) Predator-prey dynamics with no stage structure. The closed
loop in b) indicates the solution is numerically accurate (‘tol’=1e-7 in
‘solverOptions’); d) when ‘tol’=1e-3 in ‘solverOptions’, numerical accuracy
has not been achieved (and plot c) is incorrect) as the predator-prey graph is
no longer a closed loop.
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Figure 5: Predator-prey dynamics where the predator has a juvenile stage of
duration 0.1 d.

larvae. Both parasitoids have 2 life stages – juvenile (PJ and QJ) and adult
(PA and QA). The egg and larval attack rates are denoted by aP and aQ

resepctively. Each parasitised host becomes a single juvenile parasitoid, thus
the death rates due to parasitoids are aP PA(t)E(t) and aQQA(t)L(t) for the
host eggs and larvae respectively, and reproduction into the parasitoid juvenile
class is aP E(t)PA(t) for P and aQL(t)QA(t) for Q. Reproduction of the host
is given by ρDAA(t) where ρ is host lifetime fecundity and DA is the adult
death rate (see Briggs (1993) for the equations describing this system). In this
example we use the steady solution (provided in Appendix B by Briggs (1993))
to set the values for the immigration rates (these parameters are identified by
the ‘star’ in their name - e.g. Qstar). The stagePop code for this system is
shown in Script 6 (Appendix 3).

Theory dictates (Briggs, 1993) that in this situation the two parasitoids can
not co-exist. We use stagePop to simulate an invasion of P (after 20 time units)
into a situation where only Q and the host are initially present. For the case
in which the parasitoid Q has twice the attack rate of P (aP =1, aQ=2) and
all their other parameters are identical, P still manages to displace Q since it
attacks at an earlier stage (eggs rather than larvae) and the system settles at a
new equilibrium with a higher adult host density (Fig. 7). These simulations
are interesting from the point of view of biological control - if the adult host is a
pest which causes damage e.g. to people or crops, the most desirable parasitoid
to release is that which minimises the adult host density when in equilibrium.

3.6 Consumer-Resource problem with variable stage du-
ration [VarDurFood.R]

Here we use stagePop to reproduce an example given by Nisbet and Gurney
(1983) in which the length of the larval stage of a 2-stage species (loosely based
on the damselfly) is determined by the availability of their food. Specifically, an
individual larva becomes an adult once it has assimilated enough food to raise
its body mass by m mass units. Thus, by definition the larval stage duration,
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Figure 6: Predator-prey dynamic where the prey has density dependent death
and the predator has a juvenile stage of duration 0.1 d (top row) and 1.8 d
(bottom row). Compare with Fig. 3 by Gourley and Kuang (2004).
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Figure 7: Competition between two parasitoids attacking different life stages of
one host (compare with Fig.3 (Briggs, 1993)). See Script 6 (Appendix 3) for
parameter values.
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τL(t) is determined by the equation

∫ t

t−τL(t)

gL(x)dx = m, (10)

where gL(t) is the larval development rate (see Appendix 1, Eq. 7). It is
assumed that gL(t), is proportional to the rate of food consumption per larva,
fL(t), such that

gL(t) = ǫfL(t), (11)

and

fL(t) = fmax
F (t)

K + F (t)
, (12)

where F (t) is the food density, K is the half saturation constant and fmax is
the maximum food consumption rate. Thus the rate of food uptake by larvae
is fLL(t). Food is supplied to the larvae at a constant rate fs and the adults
have a fixed rate of reproduction, qA(t) where A(t) is the adult density at time
t. Both larvae and adults are assumed to have fixed per capita death rates DL

and DA respectively.
To solve this problem in stagePop we define it as a two species problem

where food is one species and the damselfly is the other. The ‘reproduction’ of
food is the constant rate of food supply, fs, and its ‘death’ is modelled by the
per capita rate uptake rate, fLL(t)/F (t), i.e.

fmax

K + F (t)
L(t). (13)

A time dependent death rate is specified for the food species and a time depen-
dent duration for the ‘damselfly’ using the popModel() arguments ‘timeDependLoss’
and ‘timeDependDuration’ respectively. Since the length of the stage duration
is changing in time, the durationFunc is only required at t=0, and the devel-
opment rate is set in develFunc using Eqs. 11 and 12. To set the initial value
of τL it is assumed that for t < 0 the development rate is constant, thus Eq. 10
implies gL(0)τL(0) = m. At the beginning of the simulation the larvae have an
initial amount of food, F (0) and thus gL(0) can be computed from Eqs. 11 and
12 to give

τL(0) = m
(K + F (0))

ǫfmaxF (0)
. (14)

The instructions for stagePop are given in Script 7 (Appendix 3) and the results
are shown in Fig. 8.

This example shows the flexibility of using the Nisbet-Gurney formulation –
the stage duration can be controlled by any model variable, allowing size, age,
weight etc to determine the time of transition into the next life stage.

3.7 Consumer-Resource model with multiple strains in
one species [MultipleStrains.R]

In this example we demonstrate how a species with multiple strains can be
modelled in stagePop. We begin with looking at a simplified model of bacteria
in the human colon. The bacteria feed on a resource R (e.g. food that has not
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Figure 8: Example where length of larval maturation time is determined by
food availability (Section 3.6). The simulation begins with L(0) = A(0) = 0,
F (0) = 0.1 with immigration into the larval stage at rate 1 per unit time for the
first 0.1 time units. The parameters used to achieve these plots (which compare
well with Fig. 3 (Nisbet and Gurney, 1983)) are fs = m = ǫ = K = 1, DA=2,
q=5, DL = ln( q

DA
) and fmax = 3.
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been digested further up the gut) and are subject to transport through the gut
at a rate of V . Assuming Monod-equation type growth, the rate of change in
concentration (or density) of bacterial strain i, is given by

dBi(t)

dt
= Gi R(t)

R(t) + K
Bi(t) − V Bi(t) (15)

(e.g. Kettle et al. (2014)) where Gi is the maximum specific growth rate of strain
i and K is the half saturation constant (assumed constant over all strains). The
rate of change of resource is given by

dR(t)

dt
= V Rin −

R(t)

R(t) + K

N
∑

i=1

GiBi(t)

Y
− V R(t) (16)

where N is the number of strains, Y is the yield (i.e. the number of grams of
B produced from one gram of R) and Rin is the concentration of the incoming
resource. This is modelled in stagePop as two species – species one is the
resource and species 2 is the bacteria (Script 8, Appendix 3). With no stage
structure the system rapidly reaches steady state with one strain dominating
the system (competitive exclusion; Fig. 9a and b).

However, bacteria may have a lag phase during which time there is little or
no cell growth but the cells are busy replicating various proteins and DNA in
preparation for the reproductive phase. For demonstration purposes, we assume
the length of this phase, τi, varies slightly between strains, and whilst in this
stage the bacteria are not subject to the usual transport through the system.
Thus for the lagged stage, B1,

dBi
1(t)

dt
= Gi R(t)

R(t) + K
Bi

2(t) − mi(t) (17)

where mi(t) is the maturation rate of strain i from stage one at time t; and for
the reproductive stage, B2,

dBi
2(t)

dt
= mi(t) − V Bi

2(t). (18)

The rate of change of resource is now given by

dR(t)

dt
= V Rin −

R(t)

R(t) + K

N
∑

i=1

GiBi
2(t)

Y
− V R(t). (19)

When assigning the strain traits (Gm and τi), we assume a trade-off such that a
longer lag time leads to faster growth. We incorporate this second case (Script
8, Appendix 3) and see that this has a significant effect on the results (Fig.
9c-e). The system now does not reach steady state even over the extended time
period shown and multiple strains are still co-existing after 100 time units.

4 Conclusion

The preceding sections demonstrate only a small range of the possible problems
stagePop can be used to investigate. However, we hope that these demonstrate
its flexibility and potential, and that other researchers will find stagePop useful
in their own fields.
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Figure 9: Example using multiple strains in one species. Model with no stage
structure: a) where ‘Bacteria’ is the sum over all strains, and b) time evolution of
the 6 invidual strains. Model with stage-structure: Time evolution of resource
(c), the two stages of bacteria (d), and the individual strains for the lagged
stage (e) and the reproductive stage (f). Note extended time period for the
stage-structured model.
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A The Model Formulation

Here we briefly describe the mathematical formulation used in the stagePop

however for full details the reader should consult (Gurney et al. (1983); Nisbet
and Gurney (1983); Gurney and Nisbet (1998)).

For any stage-structured species, if the number of individuals in stage i is
given by Ni, then based on simple book-keeping:

Ṅi(t) = Ri(t) − Mi(t) − Li(t)Ni(t) (20)

where Ri is the rate of recruitment into stage i (includes immigration, and re-
production or maturation from the previous stage), Mi is the rate of maturation
out of stage i and Li(t) is the per capita loss rate of individuals in stage i, given
by

Li(t) = Di(t) + Ei(t). (21)

where Di is the per capita death rate (due to natural causes and predation/-
parasitoid attack etc) and Ei is the per capita emigration rate for individuals
in stage i.

The rate of maturation, Mi, from stage i at time t is given by

Mi(t) = Ri(t − τi(t))Pi(t)[1 − τ̇i(t)] (22)

where Pi(t) is the fraction of individuals entering stage i at t − τi(t) that has
survived to time t. Assuming individuals are born into stage 1, the reproductive
stage is r, β is the reproductive function and I is the immigration rate, then
recruitment into the first stage is given by

R1(t) = β(Nr(t)) + I1(t). (23)

and, into subsequent stages by

Ri+1(t) = Mi(t) + Ii+1(t), for i = 1, ..., r. (24)

Note that immigrants are assumed to be ‘new born’ into whichever stage they
enter (i.e. with respect to age or size etc they are at the beginning of their entry
stage).

The fraction of individuals which enter stage i at t − τi and survive to time
t is given by

Pi(t) = exp

(

∫ t

t−τi(t)

−L(x)dx

)

. (25)

However in order to avoid solving integro-differential equations, Pi is replaced
by its time derivative,

Ṗi(t) = Pi(t)[Li(t − τi(t))[1 − τ̇i(t)] − Li(t)], (26)

plus an initial condition, Pi(0) = exp(−Li(0)τi(0)). The rate of change of the
stage duration, τ̇i, is defined in terms of gi(t) which is the rate at which an
individual develops within stage i at any given time, t. If g(t) is considered
to be the rate of change of a development index (e.g. size, age, nutrient levels

17
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etc) that goes from 0 at the start of the stage to γ at the end, then τi(t) is
determined by the requirement

∫ t

t−τi(t)

gi(x)dx = γ. (27)

Differentiating this gives,

g(t) − g(t − τ(t))
d

dt
(t − τ(t)) = 0, (28)

and thus the rate of change of τ is given by

τ̇i(t) = 1 −
gi(t)

gi(t − τi(t))
. (29)

For a more detailed explanation, consult Section 8.5 in Gurney and Nisbet
(1998).

If the functions (or parameters) Di, gi (or τi if τi is time independent), Ei,
Ii and β are defined, and the initial histories (i.e for −τi ≤ t ≤ 0) for Ni, τi and
Pi are provided, Equations 20-29 completely define the population dynamics of
any stage-structured species.

A.1 Assumptions

In stagePop we make the following assumptions for the initial histories:

Ri(t) = 0 for all t ≤ 0, (30)

Ii(t) = 0 for all t ≤ 0, (31)

Ei(t) = 0 for all t ≤ 0, (32)

Ni(t) = Ni(0) for all t ≤ 0, (33)

Di(t,Ni(t)) = Di(0, Ni(0)) for all t ≤ 0 if D = D(t), (34)

gi(t,Ni(t)) = gi(0, Ni(0)) for all t ≤ 0 if τ = τ(t). (35)

(36)

These are somewhat restrictive and not a result of the mathematical formulation
but rather an attempt to produce robust and simple code for

A.2 Multiple Species

For predator-prey, host-parasitoid and consumer-resource systems there can be
multiple interacting species (bearing in mind here we can consider food as a
‘species’). In this case each species is essentially modelled separately but the
species may interact in the functions for death rates, reproductive rates and
developmental rates.

A.3 Simplifications

If the stage duration, τi, does not change with time (i.e. when ‘timeDependDuration’
is ‘FALSE’ in the call to popModel(), as in the blowflies, larval competition,
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predator-prey and host-parasitoid examples), then Equations 22, 26 and 29 re-
duce to

Mi(t) = Ri(t − τi)Pi(t) (37)

Ṗi(t) = Pi(t)((Di(t − τi) + Ei(t − τi)) − (Di(t) + Ei(t))) (38)

τ̇i(t) = 0. (39)

Furthermore, if Di and Ei also do not change with time (i.e. when ‘timeDependLoss’
is ‘FALSE’ in the call to popModel() as in the blowflies example), then Equa-
tions 25 and 26 reduce to

Pi(t) = exp(−((Di + Ei)τi) (40)

Ṗi(t) = 0. (41)
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B Description of stagePop functions

B.1 Functions contained in stagePop

Also included in the stagePop package are the following functions:

• checkSolution() produces warnings if the solution contains any negative
values

• genericPlot() provides a basic plot of the results (most of the figures in
this paper have been generated automatically by stagePop)

• plotStrains() if there are multiple strains in a species, will plot them
individually (genericPlot() only plots the sum of the strains).

• runStagePopExample runs the examples shown in section 3, e.g. run-
StagePopExample(‘BlowFlies’)

• sumStrains if there are multiple strains in a species, sums the model
output over the strains in each species.

These functions are automatically called in the popModel() function, un-
less the user specifies otherwise, but can also be used on a stand alone basis.

B.2 Inputs and Outputs for popModel()

B.2.1 The input arguments to popModel()

‘numSpecies’ (integer) is the number of different species to be modelled.

‘numStages’ is a vector containing the number of life stages in each species,
e.g. ‘numStages=c(2,1)’ if there are two species - one with two stages
and another with one.

‘numStrains’ is a vector containing the number of strains in each species, e.g.
‘numStrains=c(5,10)’ if there are two species - one with five strains and
another with ten.

‘timeVec’ is a vector describing the output times for the solution
e.g. ‘seq(0,10,0.5)’.

‘speciesNames’ This is a vector of the strings containing the species’ names
e.g. ‘speciesNames=c(‘host’,‘egg parasitoid’,‘larval parasitoid’)’
These can also be used in the user-defined rate functions to index the vari-
ables in the input argument ‘x’ (see Section B.2.2) and will be used to name
the columns of the output matrix from popModel().

‘stageNames’ This is a list containing vectors of the stage names (strings) for
each species. E.g. for 2 species with one stage and three stages respectively
this could have the form
‘stageNames=list(‘adults’,c(‘eggs’,‘juvs’,‘adults’))’.

‘rateFunctions’ is a list containing the user-defined rate functions – see Sec-
tion B.2.2 for details.
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‘ICs’ is a list of matrices containing the initial conditions for every stage and
strain of each species. These must be zero for all stages apart from the
reproductive stage (usually the last stage). Thus it is recommended that
more complicated initial conditions are defined through immigration rates
in the immigrationFunc (see section B.2.2). However, the ICs can be set
as follows: Each species has a matrix with the number of columns equal to
the number of strains in that species and the number of rows equal to the
number of stages in that species. E.g. for 2 species, the first with 2 strains
and 3 stages, the second with 1 strain and 1 stage, then for zero starting
conditions: ‘ICs=list(matrix(0,ncol=2,nrow=3),matrix(0,ncol=1,nrow=1))’.

‘timeDependLoss’ (optional; default is rep(TRUE,numSpecies)) is a vector
containing TRUE/FALSE for each species. It is TRUE if the per capita
loss rate varies with time for any stage of the species (e.g. TRUE for den-
sity dependent death and/or density dependent emigration) and FALSE
otherwise. E.g. ‘timeDependLoss=c(TRUE, FALSE)’ if there is no emigra-
tion and the first species has time dependent per capita death rates but
the second does not.

‘timeDependDuration’ (optional; default is rep(FALSE,numSpecies)) is a vec-
tor containing TRUE/FALSE for each species. It is TRUE if the stage
duration varies with time for any stage of the species and FALSE oth-
erwise. E.g. ‘timeDependDuration=c(TRUE, FALSE)’ if the first species
has any time dependent stage durations but the second does not.

‘solverOptions’ (optional; default is ‘list(DDEsolver=‘PBS’, tol=1e-7,

hbsize=1e3, method=‘lsoda’, atol=1e-7, dt=0.1))’ is a list of in-
structions for the DDE solver, containing: ‘DDEsolver’, ‘tol’, ’hbsize’,
‘method’ and ‘atol’. ‘DDEsolver’ must be either ‘deSolve’ or ‘PBS’ (these
are the R packages used to solve the DDEs). The ‘tol’ option sets the
relative tolerances and ‘hbsize’ sets the size of the history buffer. The
remaining two items, ‘method’ and ‘atol’ set the numerical integration
scheme and the absolute tolerance if DDEsolver=‘deSolve’ (PBS does not
have these options).

‘checkForNegs’ (optional; default is TRUE) is TRUE if you would like to check
your solution for negative values using the function checkSolution().
Note checkSolution() can also be called separately using
‘checkSolution(output,numSpecies,numStages,numStrains,ntol)’.

‘ntol’ (optional; default is 0.01) is the tolerance on the magnitude of the
negative values detected by checkSolution() . For example if ntol=0.01
then a warning is triggered if a stage or strain of any species falls below
less than minus 1% of its maximum value at any time. If ntol is zero then
any values below zero will trigger a warning even if their magnitude is
insignificant (eg 10−30).

‘plotFigs’ (optional; defalt is TRUE) is TRUE if you would like a basic plot of
the solution. The function that is called to do this is called genericPlot()
and can also be called separately using
‘genericPlot(modelOutput, numSpecies, numStages, varNames,

speciesNames, stageNames, saveFig, figType, figName)’
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To create more sophisticated plots the user is recommended to use the
results in the matrix generated from popModel() with their own plotting
scripts.

‘saveFig’(optional; default is FALSE.) To save the figure generated by pop-
Model() make this TRUE.

‘figType’(optional; default is ‘eps’.) Format for the saved figure from pop-
Model(). This can be ‘eps’, ‘pdf’, ‘png’ or ‘tiff’.

‘figName’(optional; default name is ‘stagePopFig’ and it will be saved in your
working directory). A string containing the filepath for where the figure
file should be saved.

‘sumOverStrains’ (optional; default is TRUE). If there is more than one strain
in any species then the results for each strain are given in the model
output. If you are only interested in the results for the species as a whole
then change this to FALSE to simplify the model output.

‘plotStrainsFig’ (optional; default is TRUE (if max(numStrains)>1). This
will produce plots for each individual strain.

‘saveStrainsFig’ (optional; default is FALSE). Change to TRUE to save the
plot.

‘strainsFigType’ (optional; default is ‘eps’). Format for the saved figure.
This can be ‘eps’, ‘pdf’, ‘png’ or ‘tiff’.

‘strainsFigName’ (optional; default is ‘strainFig’ plus the species name). A
string containing the filepath describing where the strain plots should be
saved.

B.2.2 The Rate Functions (user-defined)

The user must define a list containing all the functions named below. These
must have the input arguments specified below in order for stagePop to run
(however, these arguments do not necessarily need to be used within the func-
tion). The output from each of them must be a single value which equals the
rate for the stage, species and time given in the input arguments. The input
arguments to these functions are all single values apart from ‘x’ which is a vector
of all the state variables at the input time. This is included to allow the user
to specify density-dependent rates and can be indexed using the names spec-
ified in the popModel() arguments ‘speciesNames’ and ‘stageNames’ using
x$speciesName[‘stage’,strain]. For more details see Appendix 3 and/or use the
R help function for each of the functions below.

reproFunc(x,time,species,strain) The output from this is a value for the
rate at which new organisms enter the first stage through reproduction
of the species in the input argument at the given time. The units are:
organisms time unit−1. Note, unlike the other rate functions, this does not
have the ‘stage’ input argument (this is because new organisms produced
by reproduction are only allowed to enter the first stage).
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deathFunc(stage,x,time,species,strain) The output from this is the per
capita death rate of organisms in the stage and species given in the input
arguments at the given time. The units are: time unit−1.

durationFunc(stage,x,time,species,strain) The output from this is the
length of the stage duration (in time units) for the stage and species given
in the input arguments. Note that if the stage durations vary in time then
this function will only be used to compute the initial values of the stage
durations; for future values the user must define develFunc.

develFunc(stage,x,time,species,strain) The output from this is the rate
of development rate of the stage and species given in the input arguments
at the given time. The units are: time unit−1. Note that if the stage
duration (and hence development rate) is constant in time then there is
no need to define this function e.g. if timeDependDuration is FALSE for
all species. The output from develFunc must always be strictly greater
than zero.

immigrationFunc(stage,x,time,species,strain) The output from this is
the rate of immigration (individuals per unit time) into the stage specified
in the input arguments for the input species at the given time. Since the
initial conditions for stagePop are quite restrictive, the user will generally
start the simulation by specifying immigration into a given stage over a
short interval at the start of the simulation. Note that stagePop assumes
that individuals immigrating into a stage are at the beginning of that stage
(and therefore will not move to the next stage until the time for the stage
duration has elapsed). Also the user should be aware that if these rates
are set very high the DDE solvers may fail so the user should endeavour
to enter realistic (or at least low) values.

emigrationFunc(stage,x,time,species,strain) The output from this is the
per capita emigration rate of individuals in the stage and species given in
the input arguments. The units are: time unit−1.

B.2.3 Ouput from popModel()

The output from popModel() is a matrix which contains the values of the
state variables, the probabilities of survival, the durations of each stage (if time-
varying) and the rates of change of each state variable at the times specified in
the input time vector (‘timeVec’). Each column of the output matrix is named
according to the popModel() input option ‘variableNames’:

‘time’ is the time point t at which the solution is output (specified by input
argument ‘timeVec’).

‘speciesName[i].StageNames[[i]][j]’ is the density (or number) of stage j
of species i at time t. For multiple strains, for strain k in species i, stage
j, this is ‘speciesName[i].StageNames[[i]][j].strain[k]’

‘prob.speciesName[i].StageNames[[i]][j]’ is the probability that stage j
of species i will survive the length of the stage duration at time t. Note
this is only present if species i has time dependent per capita death rates
or has time dependent stage durations.
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‘dur.speciesName[i].StageNames[[i]][j]’ is the duration of stage j for
species i at time t. Note this is only present if the stage durations for
species i are time dependent.

‘dot.speciesName[i].StageNames[[i]][j]’ is the rate of change of the den-
sity (or number) of stage j of species i at time t.

B.3 Assumptions made in stagePop

In stagePop the following assumptions are hard-coded

• The birth (via reproduction) of new individuals is always into the first life
stage.

• The simulation time always begins at zero.

• For all simulation times less than zero:

– there is no reproduction or immigration,

– the number or density of organisms in each stage is equal to those at
time zero,

– the death rate is equal to that at time zero,

– the development function is equal to that at time zero.

B.4 Checking the solution from stagePop is accurate

As with any numerical integration the results from stagePop are subject to
error. Ideally, the user should check the results against an analytical solution
(e.g. at equilibrium conditions). However, since this is frequently not possi-
ble, the simplest way to check for inaccuracies is to use the checkSolution()
function (this is called if the popModel() input argument ‘checkForNegs’ is
TRUE (default)). This will find negative values in your solution within a limit
specified by ‘ntol’. If negative values do occur then the user can try reducing
the size of the tolerances in ‘solverOptions’ to improve the numerical accuracy.
For further confirmation of the solution this can be repeated with both DDE
solvers (i.e. deSolve and PBS). The user should be aware that the size of the tol-
erances needed may differ vastly between modelling projects and DDE solvers.
As the tolerance size decreases the run time for stagePop will increase, thus
if CPU time is important the user is recommended to find the largest toler-
ance size required for an accurate solution. To do this we recommend repeating
the simulation with increasingly smaller tolerances until the solution no longer
changes.

B.5 Trouble Shooting

If error messages or warnings appear in the console window that mention the
integration step size this generally means that the DDE solver can not solve the
problem without making the step size too small to compute (generally because
the problem is stiff). The default solver method for deSolve is ‘lsoda’ which
is designed to deal with stiff and non-stiff problems but the user can also try
different methods via the ‘method’ option. If time lags are long then errors may
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occur saying the lag history is not long enough (or that the lag for a variable is
too long). To deal with this the history buffer size of the solver can be changed
in using ‘hbsize’. If both the DDE solvers (deSolve and PBS) fail to complete
the integration it is likely that the user has incorrectly specified the problem
or has generated extremely high rates in the user-defined rate functions. In
this case it is recommended that the rate functions be carefully checked for
internal consistency and/or the problem be non-dimensionalised or simply more
appropriately scaled. If an error says ‘The number of derivatives returned by
func() must equal the length of the initial conditions vector’ then the vector of
initial conditions is incorrect (e.g. perhaps an entry is missing).
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Script 1. BlowFlies.R (Section 3.1): Single Species with fixed death
rates and stage durations.

library(stagePop)

#All the vectors are specified in the order of the life cycle

#e.g. start with eggs and finish with reproducing adults

solver.options=list(DDEsolver=’deSolve’, atol=1e-3, rtol=1e-3,

hbsize=1e4)

#solver.options=list(DDEsolver=’PBS’, tol=1e-7, hbsize=1e4, dt=0.01)

blowFliesFunctions <- list(

reproFunc=function(x,time,species,strain){

A0=600

q=8.5

reprod=q*x$blowflies[’adults’,1] *

exp(-x$blowflies[’adults’,1]/A0)

return(reprod)

},

deathFunc=function(stage,x,time,species,strain){

#per capita death rate (/d)

a=c(0.07,0.004,0.003,0.0025,0.27)

return(a[stage])

},

durationFunc=function(stage,x,time,species,strain){

#duration of each stage in days

a=c(0.6,5.0,5.9,4.1)

return(a[stage])

},

immigrationFunc=function(stage,x,time,species,strain){

v=0

if (stage==5){

if (time>=0 & time<=1){v=100}

}

return(v)

},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput = popModel(

numSpecies=1,

numStages=5,

ICs=list(matrix(0,nrow=5,ncol=1)),

timeVec=seq(0,200,0.5),

timeDependLoss=TRUE,

timeDependDuration=FALSE,

rateFunctions=blowFliesFunctions,

solverOptions=solver.options,

stageNames=list(c(’eggs’,’larvae’,’pupae’,’juveniles’,’adults’)),

speciesNames=c(’blowflies’),

saveFig=TRUE,

figType=’eps’,

figName=’blowflies’

)
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Script 2. LarvalComp.R (Section 3.2): A single species with density-
dependent death rates.

library(stagePop)

solver.options=list(DDEsolver=’deSolve’,atol=1e-4,rtol=1e-4,method=’lsoda’,hbsize=1e6)

#solver.options=list(DDEsolver=’PBS’,tol=1e-6,hbsize=1e3,dt=0.1)

case=1 #choose case (1 or 2)

if (case==1) {

num.stages=2

stage.names=c(’larvae’,’adults’)

} else{

num.stages=3

stage.names=c(’larvae’,’adults’,’dead adults’)

}

larvalCompFunctions <- list(

reproFunc=function(x,time,species,strain){

reprod=9.4*x$flies[’adults’,1]

return(reprod)

},

deathFunc=function(stage,x,time,species,strain){

if (stage==1){v=5e-5*x$flies[’larvae’,1]}

if (stage>=2){if (case==1){v=0.2}else{v=0}}

return(v)

},

durationFunc=function(stage,x,time,species,strain){

a=c(28,5)

return(a[stage])

},

immigrationFunc=function(stage,x,time,species,strain){

v=0

if (time>=0 & time<=1){

if (stage==2){v=20}}

return(v)

},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(

numSpecies=1,

numStages=num.stages,

ICs=list(matrix(0,nrow=num.stages,ncol=1)),

timeVec=seq(0,500,0.5),

timeDependLoss=TRUE,

solverOptions=solver.options,

rateFunctions=larvalCompFunctions,

stageNames=list(stage.names),

speciesNames=’flies’,

saveFig=TRUE,

figType=’eps’,

figName=paste(’LarvalComp’,case,sep=’’))

28



stagePop: stage-structured population modelling

Script 3. VarDurEnv.R (Section 3.3): A single species whose stage
durations depend on temperature

solver.options=list(DDEsolver=’deSolve’,atol=1e-6,rtol=1e-6,hbsize=1e5)

#solver.options=list(DDEsolver=’PBS’,tol=1e-8,hbsize=1e4,dt=0.01)

tempFunc=function(time){

T=15*(1-cos(2*pi*(time+80)/365))

return(T)}

tauFunc=function(T){

maxDur=200; minDur=60

v=min(minDur+((T-20)/2)^2,maxDur)

return(v)}

varDurEnvFunctions<-list(

reproFunc=function(x,time,species,strain){

A0=600; q=11.5

reprod=q*x$Nematodes[’adults’,1] *

exp(-x$Nematodes[’adults’,1]/A0)

return(max(0,reprod))

},

deathFunc=function(stage,x,time,species,strain){

a=c(0.05,0.05)

v=a[stage]

return(max(0,v))

},

develFunc=function(stage,x,time,species,strain){

T=tempFunc(time)

v=1/tauFunc(T)

return(v)

},

durationFunc=function(stage,x,time,species,strain){

if (time==0){

T=tempFunc(time)

v=tauFunc(T)}

return(v)

},

immigrationFunc=function(stage,x,time,species,strain){

v=0

if (stage==2){if (time>=0 & time <=0.1){v=1}}

return(v)

},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(

numSpecies=1,numStages=2,

timeDependLoss=FALSE,timeDependDuration=TRUE,

ICs=list(matrix(0,nrow=2,ncol=1)),

timeVec=seq(0,365*6,1),

solverOptions=solver.options,

rateFunctions=varDurEnvFunctions,

stageNames=list(c(’juveniles’,’adults’)),speciesNames=c(’Nematodes’))
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Script 4. PredPrey1.R (Section 3.4): Classic Predator-Prey model.

growthRatePred=10

growthRatePrey=1

deathRatePrey=1

deathRatePred=0.5

#solver.options=list(DDEsolver=’deSolve’,atol=1e-6,rtol=1e-6,method=’lsoda’,hbsize=1e4)

solver.options=list(DDEsolver=’PBS’,tol=1e-7,hbsize=1e4,dt=0.01)

ppFunctions <- list(

reproFunc=function(x,time,species,strain){

if(species==1){

reprod=growthRatePrey*x$prey[’adults’,1]}

if(species==2){

reprod=growthRatePred*x$prey[’adults’,1]*x$predator[’adults’,1]}

return(max(0,reprod))

},

deathFunc=function(stage,x,time,species,strain){

if(species==1){

v=deathRatePrey*x$predator[’adults’,1]}

if(species==2){

v=deathRatePred}

return(max(0,v))

},

durationFunc=function(stage,x,time,species,strain){return(0)},

immigrationFunc=function(stage,x,time,species,strain){return(0)},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(

numSpecies=2,

numStages=c(1,1),

timeDependLoss=c(TRUE,FALSE),

timeDependDuration=c(FALSE,FALSE),

ICs=list(matrix(0.3,1,1),matrix(1,1,1)),

timeVec=seq(0,100,0.1),

solverOptions=solver.options,

plotFigs=TRUE,

rateFunctions=ppFunctions,

speciesNames=c(’prey’,’predator’),

stageNames=list(’adults’,’adults’)

)

30



stagePop: stage-structured population modelling

Script 5. PredPrey2.R (Section 3.4): Predator-Prey model with
stage-structured predator

growthRatePred=10; growthRatePrey=1

deathRatePrey=1; deathRatePred=c(1.0,0.5)

preyCarryCapacity=1

#solver.options=list(DDEsolver=’deSolve’,atol=1e-6,rtol=1e-6,method=’lsoda’,hbsize=1e4)

solver.options=list(DDEsolver=’PBS’,tol=1e-8,hbsize=1e4,dt=0.01)

case=1 #choose case

if (case==1){juvPredDuration=0.1;lenTime=100}

if (case==2){juvPredDuration=0.1;lenTime=300}

if (case==3){juvPredDuration=1.8;lenTime=300}

if (case==4){juvPredDuration=0.1;lenTime=400;deathRatePred[1]=0}

if (case==5){juvPredDuration=5;lenTime=400;deathRatePred[1]=0}

if (case==6){juvPredDuration=15;lenTime=400;deathRatePred[1]=0}

if (case==7){juvPredDuration=20;lenTime=400;deathRatePred[1]=0}

ppFunctions <- list(

reproFunc=function(x,time,species,strain){

if(species==1){reprod=growthRatePrey*x$Prey[’adult’,1]}

if(species==2){reprod=growthRatePred*x$Prey[’adult’,1]*x$Predator[’adult’,1]}

return(max(0,reprod))

},

deathFunc=function(stage,x,time,species,strain){

if(species==1){

if(case==1){v=deathRatePrey*x$Predator[’adult’,1]}

if(case>1){v=deathRatePrey*x$Predator[’adult’,1]+

growthRatePrey*x$Prey[’adult’,1]/preyCarryCapacity}}

if(species==2){v=deathRatePred[stage]}

return(max(0,v))

},

durationFunc=function(stage,x,time,species,strain){

return(juvPredDuration)

},

immigrationFunc=function(stage,x,time,species,strain){return(0)},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(

numSpecies=2,

numStages=c(1,2),

timeDependLoss=c(TRUE,FALSE),

timeDependDuration=c(FALSE,FALSE),

ICs=list(matrix(0.3),matrix(c(0,1),nrow=2,ncol=1)),

timeVec=seq(0,lenTime,0.1),

solverOptions=solver.options,

plotFigs=TRUE,

rateFunctions=ppFunctions,

stageNames=list(’adult’,c(’juvenile’,’adult’)),

speciesNames=c(’Prey’,’Predator’)

)
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Script 6. Briggs.R (Section 3.5): Host-Parasitoid model (1 host, 2
parasitoids)

attackRateP=1; attackRateQ=2;

TE=0.5; TL=0.5; TJP=0.4; TJQ=0.4

deathE=0.1;deathL=0.1;deathA=0.1;deathJP=0.1;

deathP=8.0;deathJQ=0.1;deathQ=8.0

rho=33 #total lifetime fecundity

LstarQ=4.16;AstarQ=9.44;Qstar=3.40

BriggsFunctions <- list(

reproFunc=function(x,time,species,strain){

if (species==1){reprod=rho*deathA*x$Host[’adults’,1]}

if (species==2){reprod=attackRateP*x$’Egg

Parasitoid’[’adults’,1]*x$Host[’eggs’,1]}

if (species==3){reprod=attackRateQ*x$’Larval

Parasitoid’[’adults’,1]*x$Host[’larvae’,1]}

return(max(0,reprod))

},

deathFunc=function(stage,x,time,species,strain){

if (species==1){a=c(deathE,deathL,deathA);v=a[stage]

if (stage==1){v=a[stage]+attackRateP*max(x$’Egg

Parasitoid’[’adults’,1],0)}

if (stage==2){v=a[stage]+attackRateQ*max(x$’Larval

Parasitoid’[’adults’,1],0)}}

if (species==2){a=c(deathJP,deathP);v=a[stage]}

if (species==3){a=c(deathJQ,deathQ);v=a[stage]}

return(max(0,v))

},

durationFunc=function(stage,x,time,species,strain){

if (species==1){a=c(TE,TL)}

if (species==2){a=TJP}

if (species==3){a=TJQ}

return(a[stage])

},

immigrationFunc=function(stage,x,time,species,strain){

v=0

if (species==1){if (time>=0 &

time<=0.1){f1=rho*deathA*AstarQ

if (stage==1){v=f1}

if (stage==2){v=f1*exp(-deathE*TE)}

if (stage==3){v=f1*exp(-deathE*TE-deathL*TL)}}}

if(species==2){if(time>=20 & time<=20.1){

if(stage==2){v=1}}}

if(species==3){if(time>=0 & time<=0.1){

if(stage==1){v=attackRateQ*Qstar*LstarQ}}}

return(v)

},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(numSpecies=3,

numStages=c(3,2,2),

timeVec=seq(0,50,0.1),
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rateFunctions=BriggsFunctions,

timeDependLoss=c(TRUE,FALSE,FALSE),

timeDependDuration=c(FALSE,FALSE,FALSE),

ICs=list(matrix(0,nrow=3,ncol=1),matrix(0,nrow=2,ncol=1),matrix(0,nrow=2,ncol=1)),

solverOptions=list(DDEsolver=’PBS’,tol=1e-7,hbsize=1e4,dt=0.01),

speciesNames=c(’Host’,’Egg Parasitoid’,’Larval Parasitoid’),

stageNames=list(c(’eggs’,’larvae’,’adults’),c(’eggs’,’adults’),c(’eggs’,’adults’))

)
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Script 7. VarDurFood.R (Section 3.6): Consumer-resource problem
with variable stage duration.

fs=1; fmax=3; F0=0.1 #rate of food supply; max rate; initial food density

m=1 #number of mass units a larva must increase to become an adult

epsilon=1#const of proportionality between development and food

consumption

K=1 #half sat constant for food consumption

q=5; dA=2 #reproduction rate; adult death rate

dL=log(q/dA) #larval death rate

solver.options=list(DDEsolver=’deSolve’,atol=1e-9,rtol=1e-9,method=’lsoda’,hbsize=1e4)

#solver.options=list(DDEsolver=’PBS’,tol=1e-9,hbsize=1e4,dt=0.01)

varDurFoodFunctions <- list(

reproFunc=function(x,time,species,strain){

if(species==1){reprod=fs}

if(species==2){reprod=q*x$Damselfly[’adults’,1]}

return(max(0,reprod))

},

deathFunc=function(stage,x,time,species,strain){

if(species==1){v=fmax*x$Damselfly[’larvae’,1]/(K+x$Food[1,1])}

if(species==2){a=c(dL,dA);v=a[stage]}

return(max(0,v))

},

durationFunc=function(stage,x,time,species,strain){

if(time==0 & species==2 & stage==1){

v=m/(epsilon*fmax*F0/(K+F0))}

return(v)

},

develFunc=function(stage,x,time,species,strain){

if (species==2 & stage==1){

v=epsilon*fmax*x$Food[1,1]/(K+x$Food[1,1])}

return(v)

},

immigrationFunc=function(stage,x,time,species,strain){

v=0

if (species==2 & stage==1){

if (time>=0 & time<=0.1){v=1}}

return(v)

},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput=popModel(

numSpecies=2,speciesNames=c(’Food’,’Damselfly’),

numStages=c(1,2),stageNames=list(’one’,c(’larvae’,’adults’)),

numStrains=c(1,1),

timeDependLoss=c(TRUE,FALSE),timeDependDuration=c(FALSE,TRUE),

ICs=list(matrix(F0,1,1),matrix(0,nrow=2,ncol=1)),

timeVec=seq(0,30,0.1),

solverOptions=solver.options, rateFunctions=varDurFoodFunctions

)
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Script 8. MultipleStrains.R (Section 3.7): Consumer-resource with
multiple strains which have a trade-off between maximum growth
rate and stage duration.

Rin=10; V=1; K=1;Yield=0.5; num.strains=6

if (num.strains>1){Gmax=2+seq(1,num.strains)}else{Gmax=2}

case=2#choose case

if(case==1){num.stages=1;stage.names=’reproductive’;start=0.1}

if(case==2){num.stages=2;stage.names=c(’lagged’,’reproductive’);start=c(0,0.1)}

strainsFunctions <- list(

reproFunc=function(x,time,species,strain){

if (species==1){reprod=Rin*V}

if (species==2){reprod=x$Bacteria[’reproductive’,strain]*

Gmax[strain]*x$Resource[’food’,1]/(x$Resource[’food’,1]+K)}

return(reprod)

},

deathFunc=function(stage,x,time,species,strain){

if (species==1){uptake=0*seq(1,num.strains)

for (s in seq(1,num.strains)){

uptake[s]=(Gmax[s]/(x$Resource[’food’,1]+K))*(x$Bacteria[’reproductive’,s]/Yield)}

death=sum(uptake)+V}

if (species==2){

if (stage==1){if(num.stages==2){death=0}else{death=V}}

if (stage==2){death=V}}

return(death)

},

durationFunc=function(stage,x,time,species,strain){

durations=2*seq(1,num.strains)

return(durations[strain])

},

immigrationFunc=function(stage,x,time,species,strain){return(0)},

emigrationFunc=function(stage,x,time,species,strain){return(0)}

)

modelOutput = popModel(

numSpecies=2,

numStrains=c(1,num.strains),

numStages=c(1,num.stages),

ICs=list(matrix(Rin,nrow=1,ncol=1),matrix(start,nrow=num.stages,ncol=num.strains)),

timeVec=seq(0,100,0.5),

timeDependLoss=c(TRUE,FALSE),

timeDependDuration=c(FALSE,FALSE),

rateFunctions=strainsFunctions,

solverOptions=list(DDEsolver=’PBS’,tol=1e-7,hbsize=1e4,dt=0.01),

stageNames=list(c(’food’),stage.names),

speciesNames=c(’Resource’,’Bacteria’),

saveFig=TRUE,figType=’eps’,figName=paste(’multiStrain’,case,sep=’’),

sumOverStrains=FALSE,

plotStrainsFig=TRUE,saveStrainsFig=TRUE,strainsFigType=’eps’,strainsFigName=’strainFig’

)

35



stagePop: stage-structured population modelling

References

Beck-Johnson, L., Nelson, W., Paaijmans, K., Read, A., Thomas, M., and
Bjørnstad, O. (2013). The effect of temperature on anopheles mosquito pop-
ulation dynamics and the potential for malaria transmission. PLOS one,
8:79276.

Briggs, C. (1993). Competition among parasitoid species on a stage-structured
host and its effect on host suppression. The American Naturalist, 141:372–397.

Gourley, S. and Kuang, Y. (2004). A stage structured predator-prey model and
its depdendence on maturation delay and death rate. Mathematical Biology,
49:188–200.

Gurney, W. and Nisbet, R. (1998). Ecological Dynamics. Oxford University
Press.

Gurney, W., Nisbet, R., and Lawton, J. (1983). The systematic formulation of
tractable single-speices population models incorporating age structure. Jour-

nal of Animal Ecology, 52:479–495.

Kettle, H., Donnelly, R., Flint, H., and G., M. (2014). ph feedback and pheno-
typic diversity within bacterial functional groups of the human gut. Journal

of Theoretical Biology, 342:62–69.

Lotka, A. (1925). Elements of Physical Biology. Williams and Wilkins.

Nicholson, A. (1954). An outline of the dynamics of animal populations. Aus-

tralian Journal of Zoology, 2:9–65.

Nicholson, A. (1957). The self-adjustment of populations to change. Cold spring

Harbour symposium on Quantitative Biology, 22:153–173.

Nisbet, R. and Gurney, W. (1983). The systematic formulation of population
models for insects with dynamically varying instar duration. Theoretical Pop-

ulation Biology, 23:114–135.

Schnute, J., Couture-Beil, A., Haigh, R., and Kronlund, A. (2013). PBSmod-
elling R package. http://code.google.com/p/pbs-modelling/.

Soetaert, K., Petzoldt, T., and Woodrow Setzer, R. (2010). Solving differential
equations in r: Package desolve. Journal of Statistical Software, 33(9):1–25.
http://www.jstatsoft.org/v33/i09/.

36


