## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(vaxineR) library(dplyr) ## ----data_glimpse------------------------------------------------------------- glimpse(florida_vaccine_coverage) # Let's look at the data for a single county florida_vaccine_coverage %>% filter(County == "Leon") ## ----smart-default-example, fig.width=7, fig.height=5------------------------- plot_outbreak_prob(disease = "Pertussis") ## ----override-default-example, fig.width=7, fig.height=5---------------------- plot_outbreak_prob(disease = "Pertussis", VE = 0.92) ## ----custom-summary----------------------------------------------------------- summary_infection_risk( yr = 2024, disease = "Custom", VE = 0.88, r0_custom = 11 ) ## ----plot-history, fig.width=7, fig.height=5---------------------------------- plot_coverage_history(county_name = c("Florida", "Broward", "Leon")) ## ----plot-risk, fig.width=7, fig.height=5------------------------------------- plot_risk_curve(disease = "Measles", kindergarten_size = 200) ## ----save-data-example-------------------------------------------------------- plot_risk_curve( disease = "Chickenpox", save_data_to = "chickenpox_risk_data.xlsx" )